
APPENDIX E

METSIM® IRONMAKING PROCESS SIMULATIONS

L-1:	BASE CASE MIDREX SHAFT FURNACE
E-2:	HYLSA IVM (REFORMERLESS WITH HOT DRI CHARGE TO EAF)
E-3:	TECNORED SHAFT MELTER
E-4:	HISMELT OXYGEN REACTOR
E-5:	REDSMELT ROTARY HEARTH FURNACE
E-6:	CIRCORED FLUID-BED REDUCTION PROCESS (NATURAL GAS REDUCTANT)
E-7:	CIRCOFER FLUID-BED REDUCTION PROCESS (COAL REDUCTANT)

E-8: GENERIC IRON CARBIDE PROCESS

APPENDIX E-1: BASE CASE MIDREX SHAFT FURNACE

IRONMAKING PROCESS DESCRIPTION

MIDREX® SHAFT FURNACE

PROCESS BACKGROUND:

The Midrex ™ Direct Reduction process is based upon a low pressure, moving bed shaft furnace where the reducing gas moves counter-current to the lump iron oxide ore or iron oxide pellet solids in the bed. The reducing gas (from 10-20% CO and 80-90% H₂) is produced from natural gas using Midrex's CO₂ reforming process and their proprietary catalyst (instead of steam reforming).

A single reformer is utilized instead of a reformer/heater combination. The reformed gas does not need to be cooled before introduction to the process. There is also no need for a separate CO₂ removal system.

The process can produce cold or hot DRI as well as HBI for subsequent use as a scrap substitute feed to a steelmaking melting furnace (SAF, EAF or oxygen steelmaking process).

Over 50 Midrex[™] Modules have been built worldwide since 1969. They have supplied over 60% of the worlds DRI since 1989.

Standard sizes:

MIDREX TM Series 500 Module MIDREX TM Series 750 Module MIDREX MEGAMOD TM MIDREX CURRENATION AND ADDRESS OF THE ADDRESS OF	(0.25-0.5 MM mt/year) (0.5-0.8 MM mt/year) (0.8-1.0 MM mt/year) (1.0-1.6 MM mt/year) (1.6-2.7 MM mt/year)
---	---

PROCESS DESCRIPTION:

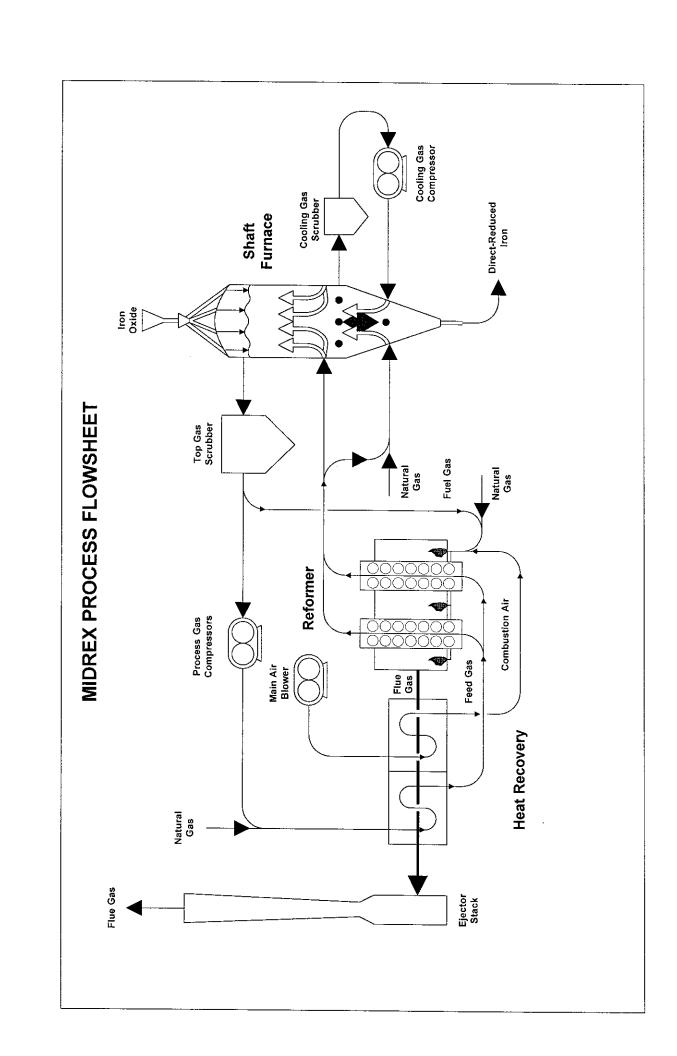
The iron oxide feed to a Midrex ® shaft furnace can be in the form of pellets, lump ore or a mixture of the two (in 0 to 100% proportions). The solid feed is discharged into a feed hopper on top of a proportioning hopper that evenly distributes the solids into the shaft furnace.

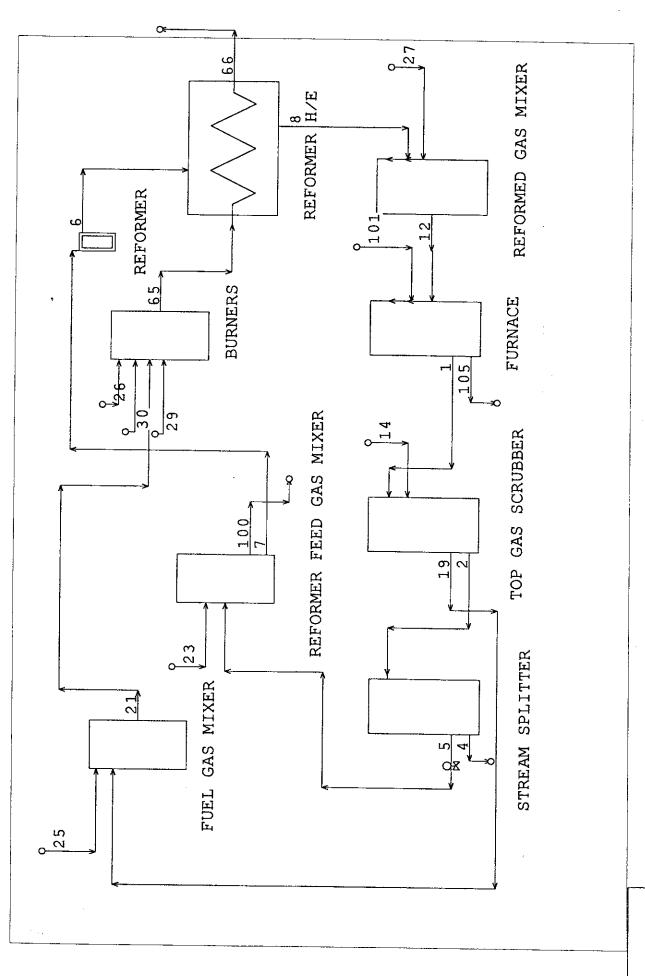
A dynamic seal leg keeps the reducing gas inside the furnace. The shaft furnace operates at low pressure, under 1 bar gauge, which allows dynamic seals to be used on the furnace inlet and discharge. The iron ore burden in the shaft furnace is first heated, then reduced by the upward flowing, counter-current reducing gas that is injected through tuyeres located in a bustle distributor at the bottom

of the cylindrical section of the shaft. The ore is reduced to a metallization typically in the range of 93% to 94% by the time it reaches the bustle area.

Below the bustle area, it goes through a transition zone (with design to reduce agglomeration or lumping) and then reaches the lower conical section of the furnace. Lower carbon reduced iron (<1.5% C) is cooled using a circulating stream of cooled exhaust gas that is introduced in the conical section for cold DRI discharge. Higher carbon DRI (up to 4.0% C) can be produced by introduction of natural gas into this cooling gas. It readily reacts (and cracks) with the highly reactive metallic DRI.

For hot discharge of DRI to be used for hot charging of EAF's (i.e. Midrex's Hotlink™ Process) or for feed to hot briquetting presses (to produce HBI), the lower part of the furnace is modified to allow handling of hot burden.


The Midrex gas generation system consists of a CO₂ reformer using their own catalyst. The feed to the reformer is a mixture of process gas recycled from the furnace and makeup natural gas. The top gas leaving the shaft furnace at a temperature of 400 to 450C is cooled and dust is removed in a top gas scrubber. About two-thirds of the gas is recycled back to the process (process gas) and the rest is used as a fuel. The process gas is compressed, mixed with natural gas and is preheated in the reformer recuperator before entering the tubes of the reformer.


The reformed gas comprising of mostly CO and H_2 exits the reformer at about 850 °C and passes through collection headers to the reformed gas line. The ratio of H_2 to CO is controlled at about 1.5 to 1.8, and reducing quality at 11 to 12 for best operation.

PROCESS ADVANTAGES:

World-wide commercial use
Proven performance
"Relatively-forgiving" operation
Raw material flexibility

CO₂ reformer eliminates need for steam system, reformed gas quench, reducing gas heating and CO₂ removal system.

MIDREX PROCESS

Midrex Process --- MetSim Model --- Description

The MetSim model for this process is largely based upon a basic flowsheet for a Midrex Megamod reactor for Tondu Corporation by Midrex Direct Reduction Corporation, Charlatte, USA.

Flowsheet Description

Stream 101 representing the lump ore feed consists of 82% Fe2O3, 12% Fe3O4 and 6% SiO2. In the Reduction furnace, this feed is heated and reduced by the upcoming reducing gases or Bustle gas (Stream 12) into DRI (Stream 105). Stream 1 representing the Top gas is passed through a Gas Scrubber and a stream splitter to divide the Top gas into Process gas and Fuel gas. The Process gas is mixed with some natural gas and passed through a Mist Eliminator (Both unit operations performed by one MetSim unit operation called Reformed feed gas mixer). Stream 7 representing the process gas to reformer undergoes reforming reactions in the Reformer. Fuel gas (Stream 19) is mixed with some natural gas (Stream 25) and burned in the main Burner. Also additional natural gas (Stream 26) is burned with air (Stream 30) in the auxiliary Burner. This leads to hot flue gases (Stream 65). This stream is used to keep the reformer hot. The hot reformed gases (Stream 8) are again mixed with some natural gas (Stream 27) to yield the Bustle gas (Stream 12).

Model Assumptions:

Reduction Furnace: The temperature of hot bustle gas is 840C. The top gas comes out at 402C. Complete reduction of iron ore takes place along with some reaction between metallic Fe and natural gas to give Fe3C. No carry-over of solid particles in the Top gas is assumed.

Top Gas Scrubber: The hot Top gases are mixed with some recycle stream and divided into two parts: Process gas and Fuel gas.

Stream Splitter: Only a MetSim unit operation; does not exist in reality. Process gas is divided into the portion required to carry out complete reduction. Rest goes back as recycle stream.

Reformed Feed Gas Mixer: All liquid water is separated.

Reformer: The reactions reach equilibrium.

Reformer H/E: The temperature of hot reformed gases is 940C.

Results

It was decided to achieve same operating conditions as were outlined in the Tondu proposal by Midrex. In the absence of information on gas compositions and amounts for certain feed streams, a few assumptions were made. These led to some differences between the MetSim Model results and the data by Midrex.

It was observed that although complete metallization took place in the furnace, the amount of gases flowing in and around the reduction furnace were higher than those outlined in the proposal by Midrex. This is partly due to the unknowns about the bustle gas composition.

MIDREX PROCESS --- STREAM SUMMARY

Stream Number	1	2	4	5	6			
Stream Names	TOP GAS		TO COOLIN	L	GAS FROM		REFORMED	12
MT/HR SOLIDS	0	0	0	0	O O	GAS TO RE	REFORMED	GAS FOR R
MT/HR AQUEOUS	0	0	0	0	······································	0	0	0
MT/HR GASEOUS	254.14	213.63	28.356	185.28	190.6	190.6	0	0
MT/HR TOTAL	254.14	213.63	28.356	185.28	190.6	190.6		195.04
Percent Solids	0	0	0	0	190.0	190.0	190.82	195.04
Sp.Gr.SOLIDS	0	0	0	0		0	0	0
Sp.Gr.AQUEOUS	0	0	0	0	0	0	0	0
Sp.Gr.GASEOUS	0.00033391	0.00035009	0.00035009	0.00035009	0.0007686	0.00026588	0.00018939	0.00047045
Sp.Gr.TOTAL	0.00033391	0.00035009	0.00035009	0.00035009	0.0007686	0.00026588		0.00017045
Temperature C	402	369.31	369.31	369.31	25	560	0.00018939 940	0.00017045
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	840
Gas nm3/hr	3.08E+05	2.59E+05	34437	2.25E+05	2.27E+05	2.35E+05	2.27E+05	101.33
Component Mass Flo	w Rates	*				2.002.00	2.271.703	2.81E+05
1 Fe2O3 MT/HR	0	0	0	0	0	0	0	
2 Fe3O4 MT/HR	0	0	0	0	0	0	0	0
4 Fe1 MT/HR	0	0	0	0	0	0	0	
5 H2O MT/HR	0	0	0	0	0	. 0	0	
6 H2O MT/HR	27.852	22.103	2.9339	19.17	16.076	2.3003	15.919	15.919
7 C1H4 MT/HR	6.7962	5.6683	0.75238	4.916	29.908	27.105	30.156	17.189
8 C2H6 MT/HR	0.0017397	0.0013048	0.00017319	0.0011316	0.0017077	0.0011316	0.0017397	0.0017397
10 C1O1 MT/HR	69.897	61.505	8.1637	53.341	64.969	53.341	65.03	125.05
11 C1O2 MT/HR	136.22	112.74	14.965	97.78	71.818	97.78	71.936	24.781
12 H2 MT/HR	12.383	10.476	1.3906	9.0859	6.8397	9.0859	6.7862	11.106
13 N2 MT/HR	0.989	1.1336	0.15046	0.98311	0.98311	0.98311	0.989	0.989
14 O2 MT/HR	0	0	0	0	0	0	0	0.000
17 SiO2 MT/HR	0	0	0	0	0	0	0	0
18 Fe3C MT/HR	0	o	0	0	0	0	0	0
Element Mass Flow R	ates							
1 H 1	17.208	14.375	1.908	12.467	16.155	16.155	16.147	17.208
2 C 6	72.24	61.389	8.1483	53.24	69.853	69.853	70.096	73.258
3 N 7	0.989	1.1336	0.15046	0.98311	0.98311	0.98311	0.989	0.989
40 8	163.71	136.74	18.149	118.59	103.6	103.6	103.59	103.59
5 Si 14	0	0	0	0	0	0	0	0
7 Fe 26	0	0	0	0	0	0	0	0

MIDREX PROCESS --- STREAM SUMMARY

Stream Number	14	19	21	23	25	26	27	29
Stream Names	RECYCLE P	FUEL GAS	FUEL TO MA	NATURAL G	NATURAL G		NATURAL G	
MT/HR SOLIDS	0	0	0	0	0	0	0	no All
MT/HR AQUEOUS	0	0	0	0	0	0	0	0
MT/HR GASEOUS	30.7	71.211	74.289	22.189	3.0778	0.35788	4.223	258.56
MT/HR TOTAL	30.7	71.211	74.289	22.189	3.0778	0.35788	4.223	258.56
Percent Solids	0	0	0	0	0	0	0	200.00
Sp.Gr.SOLIDS	0	0	0	0	0	0	0	0
Sp.Gr.AQUEOUS	0	0	0	0	0	0	0	
Sp.Gr.GASEOUS	0.00063023	0.00035009	0.00039692	0.00065574	0.00063446	0.00063446	0.00063446	0.00037077
Sp.Gr.TOTAL	0.00063023	0.00035009	0.00039692	0:00065574	0.00063446	0.00063446	0.00063446	0.00037077
Temperature C	77	369.31	290	25	35	35	35	675
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33		101.33
Gas nm3/hr	38000	86482	90782	31000	4300	500	5900	2.01E+05
Component Mass Flo	w Rates					-		2,012.00
1 Fe2O3 MT/HR	0	0	0	0	0	0	0.	
2 Fe3O4 MT/HR	0	0	0	0	0	0	0	0
4 Fe1 MT/HR	0	0	0	0	0	0	0	0
5 H2O MT/HR	0	0	0	0	0	0.	0	0
6 H2O MT/HR	1.6188	7.3678	7.3678	0	0	0	0	0
7 C1H4 MT/HR	0.76157	1.8894	4.9672	22.189	3.0778	0.35788	4,223	0
8 C2H6 MT/HR	0	0.00043492	0.00043492	0	0	0	0	0
10 C1O1 MT/HR	12.109	20.502	20.502	0	0	0	. 0	0
11 C1O2 MT/HR	14.102	37.582	37.582	0	0	0	0	0
12 H2 MT/HR	1.5858	3.4921	3.4921	0	0	0	0	
13 N2 MT/HR	0.52242	0.37786	0.37786	0	0	ol	0	198.57
14 O2 MT/HR	0	0	0	0	0	0	0	59.986
17 SiO2 MT/HR	0	0	0	0	0	0	0	0
18 Fe3C MT/HR	0	0	0	0	0	0	0	0
Element Mass Flow R	ates							
1 H 1	1.9584	4.7916	5.565	5.5763	0.77349	0.089941	1.0613	0
2 C 6	9.6115	20.463	22.767	16.612	2.3043	0.26794	3.1617	0
3 N 7	0.52242	0.37786	0.37786	0	0	0	0	198.57
408	18.608	45.579	45.579	0	0	0	0	59.986
5 Si 14	O	0	0	0	0	0	0	0
7 Fe 26	0	0	0	. 0	0	0	0	0

MIDREX PROCESS --- STREAM SUMMARY

Stream Number	30	65	. 66	1 400		<u> </u>
Stream Names	AIR		COOLED FL	700		105
MT/HR SOLIDS	0	0	0	IVIIO !	IRON ORE	REDUCED IRO
MT/HR AQUEOUS	0	0	0	16,869	215	155.9
MT/HR GASEOUS	7.0785	340.28		. 0.869	0	0
MT/HR TOTAL	7.0785	340.28	340.28	16.869	215	155.0
Percent Solids	0	0	0 10.20	0.009	100	155.9 100
Sp.Gr.SOLIDS	0	0	0	0	4.9432	4.2899
Sp.Gr.AQUEOUS	0	0	0	0.9581	0	4.2099
Sp.Gr.GASEOUS	0.0011408	0.00013292	0.00020363	0.5551	0	
Sp.Gr.TOTAL	0.0011408	0.00013292	0.00020363	0,9581	4.9432	4.2899
Temperature C	35	2316.2	1417	100	35	300
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101,33
Gas nm3/hr	5500	2.70E+05	2.70E+05	0	0	01.55
Component Mass Flo	w Rates					
1 Fe2O3 MT/HR	0	0	0	o	176.3	
2 Fe3O4 MT/HR	0	0	0		25.8	
4 Fe1 MT/HR	0	0	0	ol	0	127.78
5 H2O MT/HR	0	0	0	16.869	0	0
6 H2O MT/HR	0	50.535	50.535	0	0	0
7 C1H4 MT/HR	0	0	0	0	0	- 0
8 C2H6 MT/HR	0	0.00043492	0.00043492	0	0	0
10 C1O1 MT/HR	0	0	0	0	0	0
11 C1O2 MT/HR	0	84.402	84.402	0	0	
12 H2 MT/HR	0	0	0	0	0	0
13 N2 MT/HR	5.4363	204.39	204.39	0	0	0
14 O2 MT/HR	1.6422	0.95997	0.95997	0	0	0
17 SiO2 MT/HR	0	0	0	o	12.9	12.9
18 Fe3C MT/HR	0	0	0	0	0	15.216
Element Mass Flow R	ates					
1H 1	0	5.655	5.655	1.8877	0	o
2 C 6	0	23.035	23.035	0	0	1.0179
3 N 7	5.4363	204.39	204.39	0	0	0
408	1.6422	107.21	107.21	14.982	66.991	6.87
5 Si 14	0	0	0	0	6.03	6.03
7 Fe 26	0	0	0	0	141.98	141.98

INPUT DATA

TITLE : MIDREX PROCESS

CASE :

DATA STORAGE FILE NAME : midrex6.sfw
HEAT BALANCE OPTION : ON
UNITS OF MASS/TIME : MT/HR

2 Fe304F 3 Fe101F 4 Fe1 F 5 H20 F 6 H20 F 7 C1H4 G 8 C2H6 G 9 C4H10G 10 C101 G 11 C102 G 12 H2 F 13 N2 F	Fe304SI1 2 Fe101SI1 Fe1 SI1 H20 LI3 H20 GC8 C1H4 GC8 C2H6 GC8 C4H10GC8 C101 GC8 C102 GC8 H2 G	2.0159 28.0134 31.9988 34.0799 64.0628 60.0848	5.1800	CMW -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -0000	SGF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
ROW CNM 1 Fe2O3 2 Fe3O4 3 Fe1O1 4 Fe1 5 H2O 6 H2O 7 C1H4 8 C2H6 9 C4H1O 10 C1O1 11 C1O2 12 H2 13 N2 14 O2 15 H2S1 16 S1O2 17 SiO2 18 Fe3C	REFERENCE B672158 B672160 B672157 B672151 B672180 B672182 B6772217 B6772223 BAK1126 B672093 B672094 B672174 B672244 B672277 B689140 B672348 B672348 B6771332	E H -197000 -267300 -65000 0 -68315 -57795 -17880 -20240 -29800 -26417 -94051 0 0 -4930 -70940 -217720 5985	HT -20749 -31312 -3998 -7903 -5071 -2403 -6424 -5819 -17099 -2962 -5911 -1837 -2846 -2979 -3383 -5603 -8654 -5013	71. 12. 14. 16. 7. 11. 32. 7. 12. 6. 7. 8. 13.	0525 1207 0914 1848 2906 8424 3274 8367 7460 9357 3659 5728 9696 6760 1364	HTE3.8751 -7.8736 1.0479 -1.3293 2.7637 1.3003 2.9907 9.4527 11.3643 0.2285 0.3891 0.4428 0.2525 0.2720 1.2152 0.2172 -0.5456 4.1225	C HTE-D 21.9462 32.0732 0.8685 11.6233 0.0000 0.3596 8.0422 4.7951 18.9320 1.9749 6.1869 -0.2847 1.7794 1.7697 2.1081 5.0762 8.8977 -5.0322
ROW CNM 1 Fe2O3 2 Fe3O4 3 Fe1O1 4 Fe1 5 H2O 6 H2O 7 C1H4 8 C2H6 9 C4H1O 10 C1O1 11 C1O2 12 H2 13 N2 14 O2 15 H2S1 16 S1O2 17 SiO2 18 Fe3C	298.2 298.2 298.2	EMP RANGE 1800.0 1800.0 1600.0 1811.0 373.2 2000.0 1000.0 1500.0 3000.0 3000.0 3000.0 3000.0 2000.0 2000.0 1400.0	-182323 -243067 -60048	-58. -19. -8. -1. -48. -45. -69. -52. -58. -36. -51. -54. -52.	6967 0598 2139 0739 4557 4106 2326 8380 8075 7976 6465 3044 8302 4032 8617 8483	HTG- 13.7715 18.9430 -5.9536 -4.253 -3.8711 -7.1789 15.8609 25.6515 -2.2569 -3.7771 -2.1036 -2.2358 -2.3535 -4.2869 -3.6510 -6.1496 13.6625	

INPUT DATA

	FLO:	L FLO														
		LABEL 1	2	3	4	5	6	7	0	_						
NO	OPR	UNIT PROCESS IS1 I	.s2		IS4	_	-	INV	8	9	~ ~		12	13		
1	SEC	MIDREX PROCESS		n	0	0	130	T1// A		052	OS3	OS4	OS5	OS6		
2		FUEL GAS MIXER		25	19	0	0	0	0	Ü	0	0	0	0	0	0
3			!R	5	23	Ö	0		0	0	21	0	0	0	0	0
4	XIM	BURNERS		26	30	21	-	0	0	0		100	0	0	0	0
5	HTX	REFORMER H/E		65	0		29	0	0	0	65	0	0	0	0	0
6	MIX	REFORMED GAS MIXER	,	8	27	0	6	0	0	0	66	8	0	0	0	0
7		FURNACE	10	-		0	0	0	0	0	12	0	0	. 0	0	0
8		TOP GAS SCRUBBER	Τſ) <u>1</u>	12	0	0	0	0	0	105	1	0	0	Ô	ō
9		STREAM SPLITTER		Ţ	14	0	0	0	0	0	2	19	0	0	ō	ō
10		REFORMER		2	0	0	0	0	0	0	4	5	0	0	Ō	ñ
-				/	U	0	0	0	0	0	6	0	0	0	Ō	Õ

			${ m HE} P$	T BALAI	NCE SUMN	MARY -	1000 KC	AL/HOUR	
		INPUT	\mathtt{HEAT}	HEAT	ENERGY	HEAT	HEAT	OUTPUT	
OP	PROCESS STEP	STREAM	REACT	SOLUT	INPUT	LOSS	REQRD	STREAM	TOTAL
1	MIDDRY DDOGGGG	+ -	++				+	+ -	
	MIDREX PROCESS	U	0	O	0	0	0	0	. 0
2	FUEL GAS MIXER	10582	0	0	0	0	-2120	-8462	0
3	REFORMER FEED GA	27571	9851	0	0	0	12844	-50265	ñ
4	BURNERS	51534	213270	0	0	0		-264803	Õ
5	REFORMER H/E	265120	0	0	0	-26512	0-	-238608	ő
6	REFORMED GAS MIX	87919	-63320	0	0	0	_	-83194	ñ
7	FURNACE	83490	-34940	0	0	0	•	-47077	ñ
8	TOP GAS SCRUBBER	42237	0	0	0	0		-42237	n
9	STREAM SPLITTER	31678	0	0	0	0	-	-31678	Õ
10	REFORMER	48999	2805	0	0	Ō	-51489	-315	Õ

NO.	STREAM +	TEMP-C	STREAM TEMP-F	TEMPERATURES KCAL/HR	AND ENTHALPII	ES KJ/HR
1	TOP CAS	402 00	755 60			
2	PROCESS GAS	369.31	696.77	31677782.00	125707600.0	132539842.0
3		0.00	32.00	29628815.00	117576638.0	123966960.0
4	TO COOLING GAS CYCLE	369.31	696.77	4204697.00	16685584.0	17592450.0
5		369.31	696.77	27473086.00	109022015.0	
6	GAS FROM REFORMER GAS TO REFORMER	25.00	77.00	315131.00	1250540.0	1318507.0
	GAS TO REFORMER	560.00	1040.00	48999147.00	194444329.0	205012431.0
		940.00		87887098.00	348764190.0	367719617.0
	GAS FOR REDUCTION			83193513.00	330138541.0	348081659.0
	RECYCLE PROCESS GAS			635498.00	2521861.0	2658925.0
	FUEL GAS			10559261.00	41902533.0	44179947.0
	FUEL TO MAIN BURNER				33579305.0	35404349.0
	NATURAL GAS NATURAL GAS	25.00	77.00	97442.00	386682.0	407698.0
				22921.00		95901.0
26	N.G. TO AUX. BURNER			2665.00	10576.0	11151.0
27	NATURAL GAS	35.00	95.00	31450.00		131585.0
29	HOT AIR AIR	675.00	1247.00	43047939.00		
30	AIR	35.00	95.00	21127.00	83837.0	88394.0
35		814.36	1497.85	3712815.00	14733641.0	15534418.0
65	HOT FLUE GAS	2316.15	4201.08	264803304.00	1050824432.0	1107937023.0
66	COOLED FLUE GAS	1417.02	2582.63	150720507.00	598107307.0	630614600.0
67		814.36	1497.85	70543487.00	279939179.0	295153949.0
100	COOLED FLUE GAS MIST IRON ORE REDUCED IRON	100.00	212.00	1266320.00	5025165.0	5298284.0
101	IRON ORE	35.00	95.00	296156.00	1175244.0	1239118.0
105	REDUCED IRON	300.00	572.00	5475021.00	21726638.0	22907487.0

٠.,

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

NO. STREAM	TIME	ACFM	SCFM	M3/HR	NM3/HR
1 TOP GAS 2 PROCESS GAS 3 4 TO COOLING GAS CYCLE 5 TOP GAS FOR REFORMER 6 GAS FROM REFORMER 7 GAS TO REFORMER 8 REFORMED GAS 12 GAS FOR REDUCTION 14 RECYCLE PROCESS GAS 19 FUEL GAS 21 FUEL TO MAIN BURNER 23 NATURAL GAS 25 NATURAL GAS 26 N.G. TO AUX. BURNER 27 NATURAL GAS 29 HOT AIR 30 AIR 35 65 HOT FLUE GAS	100.0000 100.0000 100.0000	447971 359167 142550 47673 311494 145954 421920 593013 673489 28671 119722 110160 19916 2855 332 3918 410449 3652 32736 1506796 983560	142549.7 20268.8 132434.7 133716.1 138327.5 133521.3 165263.9 22366.0 50901.2 53432.1 18245.9 2530.9	610229 242193 80998 529232 247978 716847 1007535 1144265 48712 203410 187163 33837 4851 564 6656 697358 6205 55620 2560063 1671080	307926.6 259444.9 242193.5 34437.0 225007.9 227185.1 235019.9 226854.1 280785.2 38000.0 86481.6 90781.6 31000.0 4300.0 500.0 5900.0 200900.0

VOLUMETRIC FLOW RATE OF STREAMS WITH LIQUIDS AND SOLIDS ONLY

NO. STREAM	TIME	USGPM	LPS	M3/HR	M3/DY
100 MIST 101 IRON ORE 105 REDUCED IRON	100.0000 100.0000 100.0000	77.5206 191.4957	4.89082 12.08157	17.60695	422.567

MASS FLOW RATES - MT/HR

NO.	STREAM	MT/HR-SI	MT/HR-LI	MT/HR-GC	MT/HR-TO
2	PROCESS GAS	0.0000	0.00000	254.1434 213.6325	254.1434 213.6325
4 5	TO COOLING GAS CYCLE TOP GAS FOR REFORMER	0.0000	0.00000	28.3562	204.7725
6 7	GAS FROM REFORMER GAS TO REFORMER	0.0000	0.00000	185.2764 190.5957 190.5957	190.5957
12	REFORMED GAS GAS FOR REDUCTION	0.0000	0.00000	190.8172	190.5957 190.8172 195.0402
19	RECYCLE PROCESS GAS FUEL GAS	0.000	0.00000	30.7000 71.2108	30.7000
23	FUEL TO MAIN BURNER NATURAL GAS NATURAL GAS	0.0000	0.00000	74.2886 22.1885	74.2886
/ h	N ('U') ATTV DESERVED			3.0778 0.3579	3.0778 0.3579
29 30	HOT AIR	0.0000	0.00000	4.2230 258.5594	258.5594
35 65	NATURAL GAS HOT AIR AIR HOT FLUE GAS	0.0000	0.00000	7.0785 14.0495	14.0495
	ОООДДД ГИЛЕ БАХ	θ and θ	0 00000	340.2844 340.2844	
100 101	MIST IRON ORE REDUCED TRON	0.0000	16.86920	0.0000	266.9407 16.8692
105	REDUCED IRON	155.8967	0.00000	0.0000	215.0000 155.8967

SPECIFIC GRAVITIES

мо.	STREAM +	PCS	SG-SI	SG-LI	SG-GC	SG-TC
1	TOP GAS	0.0000	0.0000	0.0000	0.0003	0.0003
2	PROCESS GAS	0.0000	0.0000	0.0000	0.0003	0.0003
3		0.0000	0.0000	0.0000	0.0008	0.0004
4	TO COOLING GAS CYCLE		0.0000	0.0000	0.0004	0.0004
5			0.0000	0.0000	0.0004	0.0004
6	GAS FROM REFORMER	0.0000	0.0000	0.0000	0.0004	0.0004
. 7	GAS TO REFORMER	0.0000	0.0000	0.0000	0.0003	0.0003
8	REFORMED GAS	0.0000	0.0000	0.0000	0.0003	0.0003
12	GAS FOR REDUCTION	0.0000	0.0000	0.0000	0.0002	0.0002
14	RECYCLE PROCESS GAS	0.0000	0.0000	0.0000	0.0006	0.0006
19	FUEL GAS	0.0000	0.0000	0.0000	0.0004	0.0004
21	FUEL TO MAIN BURNER	0.0000	0.0000	0.0000	0.0004	0.0004
23	NATURAL GAS	0.0000	0.0000	0.0000	0.0007	0.0007
25	NATURAL GAS	0.0000	0.0000	0.0000	0.0006	0.0006
	· · · · · · · · · · · · · · · · · · ·	0.0000	0.0000	0.0000	0.0006	0.0006
27	NATURAL GAS	0.0000	0.0000	0.0000	0.0006	0.0006
29	HOT AIR	0.0000	0.0000	0.0000	0.0004	0.0004
	AIR	0.0000	0.0000	0.0000	0.0011	0.0011
35		0.0000	0.0000	0.0000	0.0003	0.0003
	HOT FLUE GAS	0.0000	0.0000	.0.0000	0.0001	0.0001
	COOLED FLUE GAS	0.0000	0.0000	0.0000	0.0002	0.0002
67		0.0000	0.0000	0.0000	0.0003	0.0003
	MIST	0.0000	0.0000	0.9581	0.0000	0.9581
101	IRON ORE	100.0000	4.9432	0.0000	0.0000	4.9432
105	REDUCED IRON	100.0000	4.2899	0.0000	0.0000	4.2899

NO.	IDS - MT/HR STREAM	Fe2O3	Fe304	Fe101	Fe1	SiO2	Fe3C	
101 105	STREAM +	176.300 0.000	25.8000	0.00000	0.000 127.781	12.9000 12.9000	0.0000 15.2157	
NO	IDS - WEIGHT PERCENT STREAM +	Fe2O3	たっつへ 4	Fe101	Fe1	Si02	Fe3C	
101 105	IRON ORE REDUCED IRON	82.0000	12.0000	0.00000	0.0000 81.9651	6.00000 8.27471	0.00000 9.76014	
NO.	EOUS - MT/HR STREAM + MIST	H2O						
100	MIST	16.8692						
AQUI	EOUS - WEIGHT PERCENT STREAM	H2∩						
100	MIST	100.000						
NO.	EOUS - GRAMS PER LITEI STREAM	3.						
	•							
100	MIST	958.099						
GASI	EOUS - MT/HR STREAM	Н20	C1H4	C2H6	C4H10	C101	C102	H2
GASI NO. 1 2 3 4	EOUS - MT/HD	H2O 27.8524 22.1034 28.5421 2.9339	6.7962 5.6683 0.9039 0.7524	0.00174 0.00130 0.00000 0.00017	0.00000 0.00000 0.00000	69.897 61.505 51.458	136.224 112.745 113.366	12.3828 10.4764 9.5077

NO.	EOUS - MT/HR STREAM	N2	2 02	H2S1	S102			
1 2	EOUS - MT/HR STREAM + TOP GAS PROCESS GAS TO COOLING GAS CYCLE TOP GAS FOR REFORMER GAS FROM REFORMER	0.989	0.0000	0.00000	0.00000 0.00000	I		
4 5 6	TO COOLING GAS CYCLE TOP GAS FOR REFORMER CAS FROM REFORMER	0.150 0.983	0.0000	0.00000	0.00000 0.00000 0.00000			
7 8	GAS FROM REFORMER GAS TO REFORMER REFORMED GAS	0.983	0.0000	0.00000 0.00000	0.00000 0.00000 0.00000			
14 19	RECYCLE PROCESS GAS FUEL GAS	0.989 0.522 0.378	0.0000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000			
29 30	HOT AIR AIR	0.378 198.574 5.436	0.0000 59.9858 1.6422	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000			
65 66 67	GAS FROM REFORMER GAS TO REFORMER REFORMED GAS GAS FOR REDUCTION RECYCLE PROCESS GAS FUEL GAS FUEL TO MAIN BURNER HOT AIR AIR HOT FLUE GAS COOLED FLUE GAS	204.388 204.388 193.809	2.3011 0.9600 0.9600 43.7202	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000			
GASI	EOUS - WEIGHT PERCENT	H20	C1H4	С2Н6	C4H10	C101	C1.02	1:0
_			1		4	0101	CT02	HZ
1 2 3	TOP GAS PROCESS GAS	10.9593 10.3465 13.9384	2.674 2.653 0.441	0.00068 0.00061	0.00000	27.5029 28.7899	53.6014 52.7751	4.87235 4.90396
1 2 3 4 5 6	TOP GAS PROCESS GAS TO COOLING GAS CYCLE TOP GAS FOR REFORMER GAS FROM REFORMER	10.9593 10.3465 13.9384 10.3465 10.3465 8.4348	2.674 2.653 0.441 2.653 2.653 15.692	0.00068 0.00061 0.00000 0.00061 0.00061	0.00000 0.00000 0.00000 0.00000 0.00000	27.5029 28.7899 25.1295 28.7899 28.7899	53.6014 52.7751 55.3620 52.7751 52.7751	4.87235 4.90396 4.64307 4.90396 4.90396
1 2 3 4 5 6 7 8 12	TOP GAS PROCESS GAS TO COOLING GAS CYCLE TOP GAS FOR REFORMER GAS FROM REFORMER GAS TO REFORMER REFORMED GAS GAS FOR REDUCTION	10.9593 10.3465 13.9384 10.3465 10.3465 8.4348 1.2069 8.3426 8.1620	2.674 2.653 0.441 2.653 2.653 15.692 14.221 15.803 8.813	0.00068 0.00061 0.00000 0.00061 0.00061 0.00090 0.00059 0.00091	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	27.5029 28.7899 25.1295 28.7899 28.7899 34.0873 27.9864 34.0795	53.6014 52.7751 55.3620 52.7751 52.7751 37.6809 51.3022 37.6988	4.87235 4.90396 4.64307 4.90396 4.90396 4.90396 3.58859 4.76709 3.55638
1 2 3 4 5 6 7 8 12 14 19 21	TOP GAS PROCESS GAS TO COOLING GAS CYCLE TOP GAS FOR REFORMER GAS FROM REFORMER GAS TO REFORMER REFORMED GAS GAS FOR REDUCTION RECYCLE PROCESS GAS FUEL GAS FUEL TO MAIN BURNER	10.9593 10.3465 13.9384 10.3465 10.3465 8.4348 1.2069 8.3426 8.1620 5.2728 10.3465 9.9178	2.674 2.653 0.441 2.653 2.653 15.692 14.221 15.803 8.813 2.481 2.653 6.686	0.00068 0.00061 0.00000 0.00061 0.00090 0.00059 0.00091 0.00089 0.00000 0.00061 0.00059	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	27.5029 28.7899 25.1295 28.7899 28.7899 34.0873 27.9864 34.0795 64.1168 39.4447 28.7899 27.5972	53.6014 52.7751 55.3620 52.7751 52.7751 37.6809 51.3022 37.6988 12.7057 45.9345 52.7751	4.87235 4.90396 4.64307 4.90396 4.90396 3.58859 4.76709 3.55638 5.69429 5.16561 4.90396 4.70079
1 2 3 4 5 6 7 8 12 14 19 21 23 25 26 27	TOP GAS PROCESS GAS TO COOLING GAS CYCLE TOP GAS FOR REFORMER GAS FROM REFORMER GAS TO REFORMER GAS FOR REDUCTION RECYCLE PROCESS GAS FUEL GAS FUEL TO MAIN BURNER NATURAL GAS N.G. TO AUX. BURNER	10.9593 10.3465 13.9384 10.3465 10.3465 8.4348 1.2069 8.3426 8.1620 5.2728 10.3465 9.9178 0.0000 0.0000	2.674 2.653 0.441 2.653 2.653 15.692 14.221 15.803 8.813 2.481 2.653 6.686 100.000 100.000	0.00068 0.00061 0.00000 0.00061 0.00090 0.00059 0.00091 0.00089 0.00000 0.00061 0.00059 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	27.5029 28.7899 25.1295 28.7899 28.7899 34.0873 27.9864 34.0795 64.1168 39.4447 28.7899 27.5972 0.0000 0.0000	53.6014 52.7751 55.3620 52.7751 37.6809 51.3022 37.6988 12.7057 45.9345 52.7751 50.5886 0.0000 0.0000	4.87235 4.90396 4.64307 4.90396 4.90396 3.58859 4.76709 3.55638 5.69429 5.16561 4.90396 4.70079 0.00000 0.00000
1 2 3 4 5 6 7 8 2 1 4 1 9 1 2 1 2 2 3 5 6 6 7 8 2 2 2 3 6 6 6 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TOP GAS PROCESS GAS TO COOLING GAS CYCLE TOP GAS FOR REFORMER GAS FROM REFORMER GAS TO REFORMER REFORMED GAS GAS FOR REDUCTION RECYCLE PROCESS GAS FUEL GAS FUEL TO MAIN BURNER NATURAL GAS NATURAL GAS N.G. TO AUX. BURNER NATURAL GAS HOT FLUE GAS COOLED FLUE GAS	10.9593 10.3465 13.9384 10.3465 10.3465 8.4348 1.2069 8.3426 8.1620 5.2728 10.3465 9.9178 0.0000 0.0000 0.0000 0.0000 0.0000 3.1694 14.8507	2.674 2.653 0.441 2.653 2.653 15.692 14.221 15.803 8.813 2.481 2.653 6.686 100.000 100.000 100.000 100.000	0.00068 0.00061 0.00000 0.00061 0.00090 0.00059 0.00091 0.00089 0.00000 0.00061 0.00059 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	27.5029 28.7899 25.1295 28.7899 28.7899 34.0873 27.9864 34.0795 64.1168 39.4447 28.7899 27.5972 0.0000 0.0000 0.0000 1.1451 0.0000	53.6014 52.7751 55.3620 52.7751 37.6809 51.3022 37.6988 12.7057 45.9345 52.7751 50.5886 0.0000 0.0000 0.0000 4.6677 24.8032	4.87235 4.90396 4.64307 4.90396 4.90396 3.58859 4.757638 5.69429 5.16561 4.90396 4.70079 0.00000 0.00000 0.00000 0.00000 2.03566 0.00000

NO.	EOUS - WEIGHT PERCENT	N	2 02	2 H2S	1 S10:	2		
2 3 4 5 6 7 8 12 14 19	TOP GAS PROCESS GAS TO COOLING GAS CYCLE TOP GAS FOR REFORMER GAS FROM REFORMER GAS TO REFORMER REFORMED GAS GAS FOR REDUCTION RECYCLE PROCESS GAS FUEL GAS FUEL TO MAIN BURNER HOT AIR AIR HOT FLUE GAS COOLED FLUE GAS	0.3892 0.5306 0.4856 0.5306 0.5158 0.5158 0.5183 0.5071 1.7017 0.5306	2 0.0000 5 0.0000 6 0.0000 6 0.0000 8 0.0000 8 0.0000 0.0000 0.0000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000			
GASE	OUS - VOLUME PERCENT STREAM	H20	C1H4	0.00000	0.00000 C4H10	C101	C102	Н2
1 2 3 4 5 6 6 6 7 8 1 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OUS - VOLUME PERCENT STREAM	11.2536 10.5996 14.6622 10.5996 8.8041 1.2178 8.7307 7.0538 5.3000 10.5996 10.0976 0.0000 0.0000 0.0000 0.0000 0.0000 3.9657 23.2808 23.2808 3.9657	3.084 3.052 0.521 3.052 3.052 18.392 16.113 18.572 8.553 2.800 3.052 7.644 100.000 100.000 100.000 0.000 0.000 0.000 0.000	0.00042 0.00037 0.00000 0.00037 0.00056 0.00056 0.00057 0.00046 0.00000 0.000037 0.00036 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00012	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	18.1638 18.9697 17.0016 18.9697 22.8836 18.1616 22.9384 35.6385 25.5000 18.9697 18.0712 0.0000 0.0000 0.0000 0.0000 0.9215 0.0000	22.5308 22.1320 23.8391 22.1320 22.1320 21.1891 16.1498 4.4949 18.9000 22.1320 21.0836 0.0000 0.0000 0.0000 0.0000 2.3908 15.9166 15.9166	+ 44.7107 44.8963 43.6471 44.8963 33.4733 42.9837 33.2599 43.9776 46.4000 44.8963 42.7697 0.0000 0.0000 0.0000 2.7621 0.0000 0.0000

GASEOUS - VOLUME PERCENT NO. STREAM	N2			S102
19 FUEL GAS 21 FUEL TO MAIN BURNER	0.2570 0.3496 0.3285 0.3496 0.3462 0.3347 0.3488 0.2818 1.1000 0.3496 0.3330	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
29 HOT AIR 30 AIR 35 65 HOT FLUE GAS 66 COOLED FLUE GAS 67		20.9148 20.9148 11.5377 0.2490 0.2490 11.5377	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000

	,	

APPENDIX E-2:

HYLSA IVM (REFORMERLESS WITH HOT DRI CHARGE TO EAF)

HYLSA PROCESS (HYL III)

PROCESS BACKGROUND:

The HYL process uses reducing gases within a moving bed shaft furnace reactor to remove the oxygen from iron ore pellets and lump ore. In comparison to other similar technologies, it operates at slightly higher reduction temperatures (about 50 °C higher) and intermediate reduction pressures (up to 6 bars). The process can produce cold/hot DRI as well as HBI.

The HYL process can utilize higher-sulfur ore and gas feeds since it is equipped with a sulfur removal step (prior to the conventional steam reformer). A more-positive control is obtained for the reducing gas (CO to H_2 ratio) is obtained by utilizing a selective CO_2 removal circuit (typically PSA) in the circulating gas systems. This allows a wide range of CO to H_2 ratios (from 0.1 to 0.3) to be utilized depending on the required degree of metallization and/or carbon content of the final product.

PROCESS DESCRIPTION:

The iron oxide feed to a HYL shaft furnace can be pellets, lump, or a mixture of the two. The solids are fed to the top of the shaft furnace by conveyor. An automatic system of bins and pressure locks receives the ore at atmospheric pressure in an open bin, pressurizes in intermediate bins and charges it continuously to the reactor.

Hylsa divides the process into two independent sections: reducing gas generation and iron ore reduction. The natural gas (makeup to the reducing gas stream) is mixed with reducing gases recycled from the CO₂ removal system. The pressurized reducing gas is passed through a gas heater (where it is heated up to 930 °C) and is introduced to the reactor at up to 6 bar gauge. The higher gas pressure system reduces the tendency for bed fluidization, permits higher capacity from a given-diameter shaft furnace and reduces the effective volumetric flow rates or circulating gases. Higher mole ratios of reducing gas to iron oxide solids can be obtained (as compared to other shaft furnace processes).

The exhaust reducing gas from the reactor (at about 400 °C) is cooled in a quenching/scrubbing system that removes most of the water produced during the reduction process from the gas stream. Also most of the dust in the exhaust gas is also removed. The scrubbed gas is compressed, fed to the CO₂ removal system (and optionally to a SO₂ removal system) before being fed back to the lower part of the shaft furnace.

In the reducing gas generation system, natural gas is passed through a section of the reformer recuperator to preheat it, and is then desulfurized to reduce the sulfur content to less than 1 ppm. This is to prevent poisoning of the reformer catalyst with sulfur compounds. The natural gas is mixed with superheated steam from the reformer steam circuit in a steam to carbon ratio of around 2.4 to 1 by volume, and the mixture is further superheated to 620C in the reformer recuperator.

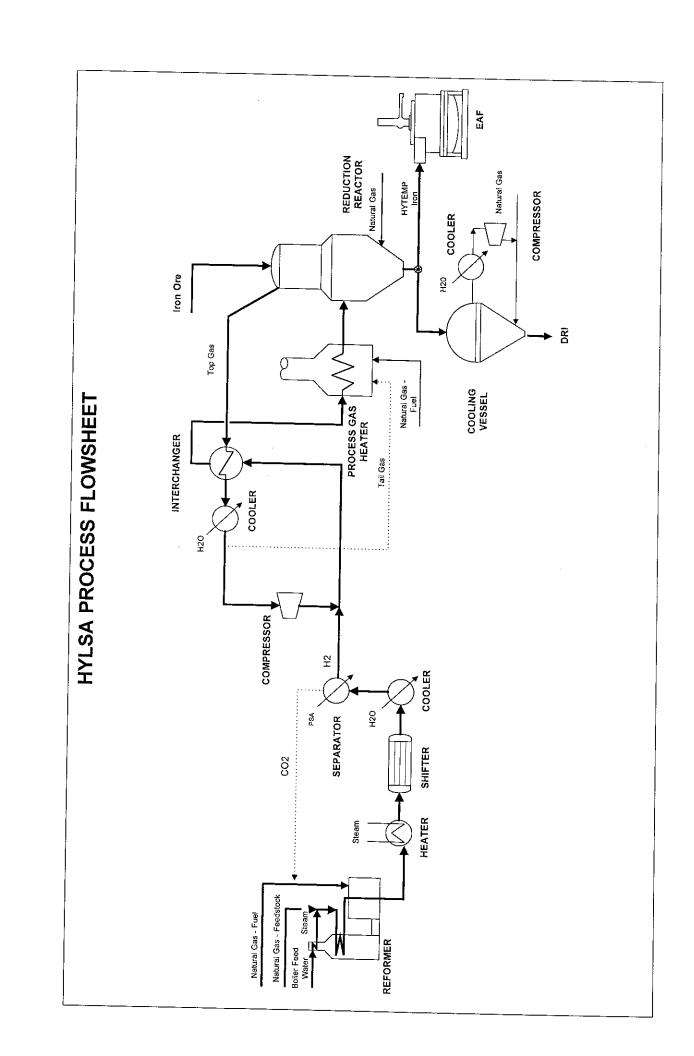
The gas mixture is heated in the tubes by gas-fired burners to a temperature of about 830 °C where the reforming reactions take place. The reformed gas passes through a waste heat boiler and through a boiler feed water preheater to recover heat. It is then quenched to remove water remaining in the gas. The product gas contains around 72% H2 and 16% H2. The reactor has a cylindrical upper section with reducing gas inlets and outlets for top gas and cooling gas. The lower part is conical and has inlets for the cooling gas when cold DRI is produced.

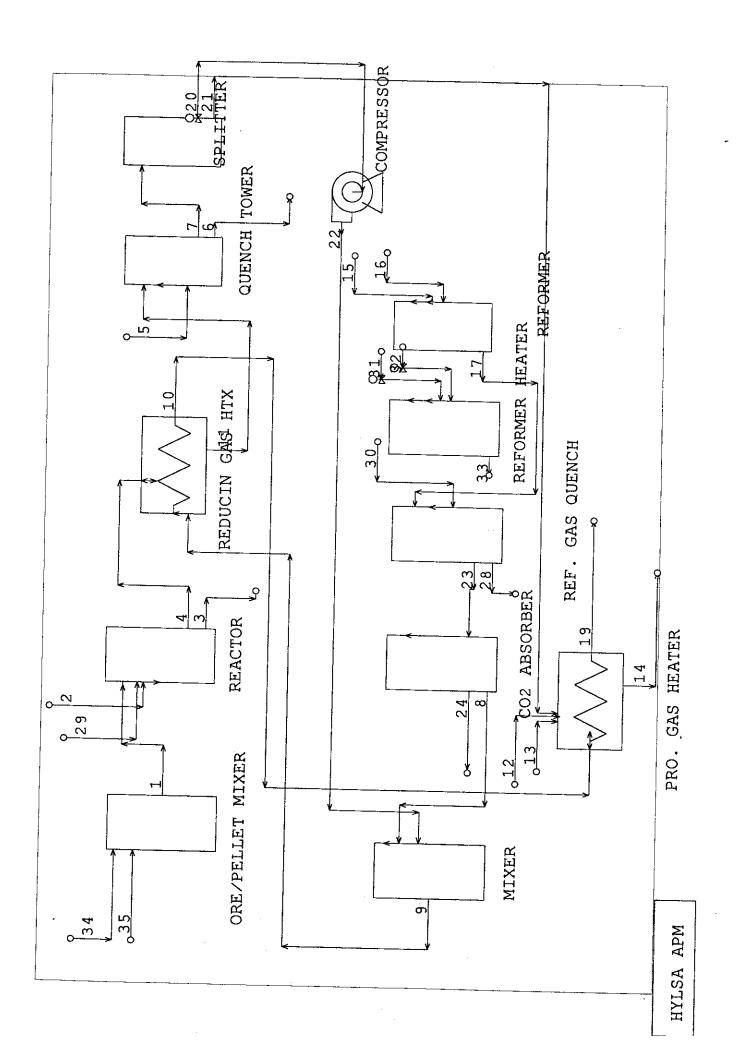
The use of a reformer that does not process gas from the reduction section isolates it from any gas-side changes which might occur in the reactor.

As the solid feed moves down the reactor by gravity flow, it is heated and reduced by reducing gas flowing upwards. The major reductant is H₂ due to its higher concentration in the reducing gas. In the conical lower part of the reactor, the burden is cooled and carburized by a circulating cooling gas that is enriched with natural gas. The product is reduced to a metallization up to 95% and carbon can be controlled in a range of 1.5% to 4.5%. For hot discharge of DRI, Hylsa's HYTEMPTM system is used which links the reactor discharge to the melt shop by way of a pneumatic conveying system.

PROCESS ADVANTAGES

Proven performance


Raw material flexibility (high S ore and natural gas)


Conventional Steam reforming

Selective elimination of H_2O and CO_2 from the reducing gas circuit allows maximum recycle of reducing gases to the reduction reactor.

Higher pressure operation reducing circulating gas volumetric flow at high molar

Flexibility to generate electric power by high pressure steam produced in the reformer.

Hylsa Process -- MetSim Model -- Description

The MetSim model for this process is largely based upon a basic flowsheet for a Hylsa reactor from HYL, Mexico.

Flowsheet Description

In this case, the ore (Stream 34) is mixed with pellets (Stream 35) to form the iron feed (Stream 1) for the Reduction reactor. The combined stream consists of approx. 96% Fe2O3 and rest other oxides. In the Reduction furnace, this feed is heated and reduced by the upcoming reducing gases (Stream 2) into DRI (Stream 3). Stream 4 representing the Top gas is passed through a Reducing gas Heat Exchanger to recover some heat and a Quench Tower to get rid of excess moisture. Then stream 7, the remaining top gas is split into two parts viz, process gas (Stream 20) and tail gas (Stream 21). The process gas is mixed with Reformed gas (Stream 8) to form Stream 9. This stream is preheated with the help of hot Top gases first and then heated further in the Process Gas Heater where heat is provided by burning tail gas and some natural gas (Stream 12).

Hylsa's reforming system is independent of its reduction system. Steam reforming of natural gas (Stream 15) occurs in the Reformer to give Reformed gas (mostly H2). The Reformer Heater supplies the energy for reforming reactions by burning natural gas (Stream 31) with air (Stream 32). The Reformer and the Reformer Heater are coupled in the model such that heat required by the Reformer is equal to the heat loss of the Reformer Heater. The hot reformed gas is cooled down and its carbon-di-oxide/ carbon-mono oxide/water content reduced so it is almost totally H2 (Stream 8). This is then mixed with the process gas to generate the Reducing gas.

Model Assumptions:

Reduction Reactor: The temperature of hot reducing gases is 930C. The top gas comes out at 730C. Complete reduction of iron ore takes place along with some reaction between metallic Fe and natural gas to give Fe3C. No carry-over of solid particles in the Top gas is assumed.

Reducing Gas Heat Exchanger: The hot top gases are used to preheat cold incoming reducing gases. 100% efficiency is assumed.

Quench Tower: Thermal equilibrium is assumed.

Stream Splitter: CO2 content of the Reducing gas is controlled by adjusting the amount of tail gas.

Compressor: No increase in temperature on compression.

Reformer: The reactions reach equilibrium.

Reformer Heater: The heat required by the Reformer is equal to the heat lost by the Reformer Heater.

Reformed Gas Quench: All water is condensed and removed.

CO2 Absorber: CO, CO2, etc. are absorbed so that remaining gas contains only hydrogen.

Process Gas Heater: The exhaust stream is at 138C. Stream 19 is equivalent to stream 2 (the reducing gases entering the Reduction Reactor).

Results

It was decided to achieve same operating conditions as were outlined in the APM proposal by HYL. In the absence of information on gas compositions and amounts for certain feed streams, a few assumptions were made. These led to some differences between the MetSim Model results and the data by HYL.

It was observed that although complete metallization took place in the furnace, the amount of natural gas required, the amount of gases flowing in and around the reduction reactor were higher than those outlined in the proposal by HYL. This is partly due to the unknowns about the various gas composition.

HYLSA PROCESS --- STREAM SUMMARY

Stream Number	1	2	3			-T	· · · · · · · · · · · · · · · · · · ·				
Stream Names	SIZED ORE/	REDUCING	DRI PRODU	REACTOR E	OUCNO	5 6		8	9	10	1
KG/HR SOLIDS	1368,3						COOLED RE	FRESH REF	COMB. RED	PREHEATE	RECYCLE
KG/HR AQUEOUS	0			- 0	 		0	0			
KG/HR GASEOUS			 				0		. 0	0	
KG/HR TOTAL	1368.3	614,81	0				584.97	49.616	614	 	1004.
Percent Solids	100		1002	1004.3	4500	4919.3	584.97	49.616	614		1004.
Sp.Gr.SOLIDS	5.0995	 		0		0	0	0			
Sp.Gr.AQUEOUS	5.0985	0		. 0	0	0	0	0			
Sp.Gr.GASEOUS			———		0.99985	0.97008	0	· D		0	
Sp.Gr.TOTAL	5 0005	0.00032676		0.00089157	. 0	0	0.0011091	0.0000423	0.0001999		0.004040
Temperature C	5.0995	0.00032676	3,4767	0.00089157	0.99985	0.97008	0.0011091	0.0000423	0.0001999	0.00015083	0.001010
Pressure kPa	30	930	730	397.26	1	82.447	82,447	307,64	142.69		-0.001010
Gas nm3/hr	101.33	470.78	101.33	450.63	101.33	101.33	380	101.33	101.33	277.97	277.9
	0	1984.7	0	2041.2	0	0	1519.4	551.65	2017.6	101.33	420
Sol/Liq m3/hr	0.26831	. 0	0.2882	0,	4.5007	5.0711	D	001.03		2017.6	2041.
Sol/Liq gpm	1.1813	0]	1.2689	0	19.816	22.327	0	0		0	
Component Mass Flo								<u> </u>	0	<u> </u>	
1 Fe2O3 KG/HR	1314.1	0	0	0	0	0	0		<u>``</u>		. <u> </u>
2 Fe1O1 KG/HR	5,2566	0	83.612	0	0	0	0	9		0	(
3 Fe1 KG/HR	0	0	701.78	0	0	0		0	0	0	
4 Ca101 KG/HR	6.6803	0	6.6803	ō.		0	0	0		0	
5 Mg101 KG/HR	0.50587	0	0,50587	0			0	0	0	0	
6 Al2O3 KG/HR	10.225	0	10.225	0	0		0	0	0	0	
7 Si102 KG/HR	29.633	0	29.633	<u>.</u>	0	0	. 0	0	0	0	
Mn101 KG/HR	0.7463	0	0.7463	0	0	0	0	0	0	0	0
0 Ti102 KG/HR	0.16576	0	0.16576			0	0	0	0	0	
1 S1 KG/HR	0.056374	0	0.056374	o		0	0	0	0	0	
2 P1 KG/HR	0.71065	0	0.71065	- 0		0	0	0		0	O
3 Na2O1 KG/HR	0.11611	0	0.11611		0	0	0	0	0	0	0
4 K201 KG/HR	0.11611	0	0.11611	0	0		0	0	0	0	0
H2O KG/HR	0	0		0	oj	0	0	0	0	0	0
7 C1H4 KG/HR	0	54.693	0	0	4500	4919.3	0	٥	0	0	0
N2 KG/HR	0	0	0	55.685			55.685	0	53.726	53.726	55,685
O2 KG/HR	ō	0	0		0	0	0	0	. 0	0	0
C101 KG/HR	0		0	0	0	0	0	0	O.	0	
C102 KG/HR	- 0	186.32	0	188,91	0	0	188.91	O.	182.26	182.26	400.04
H2O KG/HR	0	208.37	0	217.96	0	0	217.96	o	210.29	210.29	188.91
H2 KG/HR		18.856	0	437.73	0	0	18.385	o	17.738	17.738	217.96
C2H6 KG/HR		146.57	0	104.03	0	0	104.03	49.616	149.98		437.73
C3H8 KG/HR			0	0	0	0	o	0	0	149.98	104.03
C4H10 KG/HR		미	. 0	0	0	0	ō	- 0	0	0	
		0	0	0	0	0	- 0	- 0		0	
C5H12 KG/HR			0	0	0	0	0	0	0	0	
Fe3C1 KG/HR	0	0	167.63	0	0	0	- 0		0	0	0
ment Mass Flow Rat	es	·				·	<u>-</u>	<u> </u>	D	0	0
H 1	0	162.43	0	167	503.56	550,48	120.08	40.045			
C 6	0	177.71	11.213	182.18	0	0		49.616	165,47	165.47	167
N 7	0	0	0	C	0		182.18	0	175.77	175.77	182.18
8 0	419.12	274.67	41.605	655.13	3996.4	4368.9	0		0	0	Ď
Va 11	0.086136	ol	0.086136	0	0		282,71	0	272.76	272.75	655.13
/lg 12	0.30509	0	0.30509	0		O	0	0	0	0	O.
VI 13	5.4114	0	5,4114	0	0	0	0	0	o	0	0
Si 14	13.852	0	13.852	0	0	0		0	0	0	0
15	0.71065	0	0.71065		0	0	0	0	0	0	0
3 16	0.056374		0.056374	0	0	0	0	0	0	0	0
₹ 19	0.096387			0	0	0	0	0	0	ol	0
Ca 20	4.7744		0.096387	0	0	0	O	0	0	0	0
Ti 22	0.099375	0	4.7744		0	0	0	0	- 0	0	
In 25			0.099375	0	0	0	0	0	0		0
	0.57798 923.19	0	0.57798	O	0	0	0	0	0	0	0
e 26			923.19								

HYLSA PROCESS --- STREAM SUMMARY

Stream Number	13	14	45			Т					
Stream Names	AIR	EXHAUST						21	22	23	2.
KG/HR SOLIDS	0	 	DESULFURI			REDUCING	GAS TO CO	TAIL GAS	COMPRESS	QUENCHED	CO2
KG/HR AQUEOUS	0					·		0	0	0	- 1
KG/HR GASEOUS	683.09	738.92		0	0			. 0	Ó	0	(
KG/HR TOTAL	683.09	738.92	162.15	345.29	507.44	614	564.38	20.584	564.38	378.31	328,69
Percent Solids	0		162.15	345.29	507,44	614	564.38	20.584	564.38	378.31	328.69
Sp.Gr.SQLIDS	- 0	0						0	0	0	. (
Sp.Gr.AQUEOUS	0			0	0		D	٥	. 0	0	
Sp.Gr.GASEOUS	0.0011598	0.00004.440		0	0	0	0	0	. 0	0	
Sp.Gr.TOTAL	0.0011598				0.00012886	6.8532E-05	0.00029573	0.00029573	0.001374	0.00023528	0.00075575
Temperature C	30	0.00081419	0.00081212	0.00055843	0.00012886	6,8532E-05	0.00029573	0.00029573	0.001374	0.00023528	0.00075575
Pressure kPa		138	30	120	900	939.77	82.447	82.447	82.447	307.64	307.64
Gas nm3/hr	101.33	101.33	101.33	101.33	101,33	101,33	101.33	101.33	470.78	101.33	101.33
Sol/Lig m3/hr	530.7	602.94	179.9	429.6	916,86	2017.6	1466	53.467	1466	756.2	204.55
Sol/Liq gpm	. 0	0	0		0	0	0	0:	0	0	
Component Mass Floy		0	0	0	0	0	0	0	О	0	
1 Fe2O3 KG/HR	, , , , , , , , , , , , , , , , , , , 							,			
2 Fe101 KG/HR	0	0	0	0	0	0	0	0	. 0	٥	C
3 Fe1 KG/HR	0	0	- 0	0	0	0	0	0	0	0	
4 Ca101 KG/HR	0	0	0	이		0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
5 Mg101 KG/HR 6 Al203 KG/HR	0	O	0	0	0	0	0	0	0	0	. 0
7 Si102 KG/HR	0	0	0	. 0		0	0	0	0	0	0
8 Mn101 KG/HR	0	0	0	0	0	0	0	0	.0	0	0
10 Ti102 KG/HR	. 0	D ₁	0	0	0	0	Ö	0	0	0	0
11 S1 KG/HR	0	0	0	0	0	0	0	Ø	0	0	
12 P1 KG/HR	0	0	0	0	0	0	0	0	. 0	0	
	0	0	0	0	0	0	0	0	0	Ö	0
13 Na2O1 KG/HR 14 K2O1 KG/HR	0	0	0	0	0	0	0	0	0	o	0
16 H2O KG/HR	0	. 0	0	0	0	0	0	0	0	0	0
17 C1H4 KG/HR	0	0	0		0	0	0	0	-0	0	0
18 N2 KG/HR	500.00	D	104.43	0	26.107	53.726	53.726	1.9595	53.726	26.107	26.107
19 02 KG/HR	523.99	523.99	0	0	0	0	0	0	0	0	0
20 C101 KG/HR	159.1	4.2597	0	0	0	0	0	0	. 0	0	0
21.C102 KG/HR	0	0	. 0	0	48,013	182.26	182.26	6.6473	182.26	48.013	48.013
22 H2O KG/HR	0	110.78	28.259	0	254.57	210.29	210.29	7.6698	210.29	254.57	254.57
23 H2 KG/HR	0	99.89	0	345.29	129,13	17,738	17.738	0.64693	17.738	0	0.
24.C2H6 KG/HR	0	0	0	0	49.616	149.98	100.37	3.6605	100,37	49.616	0
25 C3H8 KG/HR	0	0	21.721	0	0	0	0	-0	0	0	0
26 C4H10 KG/HR		0	3.5393	0	0	0	0	0	0	0	0
27 C5H12 KG/HR	0	0	4.1987	0		<u> </u>	o	0	. 0	0	. 0
8 Fe3C1 KG/HR	0	0	0	0			0	0	0	0	0
lement Mass Flow Rat		<u> </u>	0	0	0	0	<u>oj</u>	o	0	0	0
1 H 1	0	44.470									
2 C 6	0	11.178	31.989	38.639	70.627	165.47	115.85	4.2253	115.85	56,177	6.5612
3 N 7	523,99	30.234	109.61	0	109,61	175.77	175.77	6.4107	175,77	109.61	109,61
108	159.1	523.99	0	0	0	0	0	0	0	0	ò
Na 11	0	173.52	20.546	306.65	327,2	272,76	272.76	9.948	272.76	212.52	212.52
Mg 12	- 0	0	0	0	0	0	0	0	O	0	0
Al 13	0	0	0	0	0	0	- 0	0	0	0	0
3 Si 14	0	. 0	0	0	0	0	0	0	. 0	0	0.
P 15	0	0	0	0	D .	0	0	0	. 0	0	0
0 S 16	0	0	0	0	- 0	0	0	0	0	0	0
1 K 19	0	0	0	. 0	. 0	0	0	0	0	0	0
2 Ca 20		C	0	C	O	D	o	o	. 0	0	0
3 Ti 22	- 0	<u> </u>	0		0	0	0	o	0	0	0
	0	0	0	o!	0.	0	o	.0	0		
									UI	0	(1)
5 Mn 25 5 Fe 26	0	0	0	0	0	0	0	0	0	0	0

HYLSA PROCESS -- STREAM SUMMARY

Stream Number	29	30	31	32	.33	34	25
Stream Names		· · · · · · · · · · · · · · · · · · ·	NATURAL G	··· · · · · · · · · · · · · · · · · ·	EXHAUST	ORE 34	35 PELLET
KG/HR SOLIDS	0		NATURAL G		EXHAUST 0		
KG/HR AQUEOUS	0	800	. 0	-	0		1161.1
KG/HR GASEOUS	23.2	0.00	47.913		852.22	0	0
KG/HR TOTAL	23.2	800	47.913	804.31	852.22		0
Percent Solids	0	0	47.913	0.4.31	052.22	207.2 100	1161,1
Sp.Gr.SOLIDS	0	0	0	0	0		100
Sp.Gr.AQUEOUS	. 0	0.99985	0		0	4.9507	5.127
Sp.Gr.GASEOUS	0.00081212	0.55500	0.00091251	0.0011598		0	0
Sp.Gr.TOTAL	0.00081212	0.99985	0.00091251	0.0011598	0.00084924		0
Temperature C	30	0.55563	30	30	130	4.9507	5,127
Pressure kPa	101.33	101.33	101.33	101.33	101,33	30	30 101.33
Gas nm3/hr	25.74	201.33	47.311	624.87		101.33	
Sol/Lig m3/hr	20.74	0,80012	47.311	 	679,92 0	0.044053	0.00040
Sol/Lig gpm	0	3.5228	0			0.041853	0.22646
Component Mass Flow	<u> </u>	3.3225	νν	0	0	0.18427	0.99708
1 Fe2O3 KG/HR	O	0	0	· · · · · · · · · · · · · · · · · · ·		400.00	4400.4
2 Fe101 KG/HR	0	0	0	0	. 0		1123.1
3 Fe1 KG/HR	0	0	0	0	0:	2.2378	3.0168
4 Ca1O1 KG/HR	0	0	0	0	0	0.06216	6 6180
5 Mg1O1 KG/HR	0	. 0	0	0	0		6.6182
6 Al2O3 KG/HR	0	0	0	0	0	0.04144	0.46443
7 Si1O2 KG/HR	0	0	0	0	0	1.8648	8.3598
8 Mn101 KG/HR	0	0	0	0	0	11.52	18.113
10 Ti102 KG/HR	0	0	0	0	0	0.16576	0.58054
11 S1 KG/HR	0	0	0	0	0	0.16576	
12 P1 KG/HR	0	0	0	0	0	0.033152	0.023222
13 Na2O1 KG/HR	0	0	0 0	0	0	0.15333	0.55732
14 K2O1 KG/HR	0	0	0	0	0	0	0.11611
16 H2O KG/HR	0	800	0	C	0	0	0.11611
17 C1H4 KG/HR	14,942	0.00	25.736	0	0	0	0
18 N2 KG/HR	0	0	20.730	616.97	616.97	0	
19 O2 KG/HR	0	0	0	187.34	29.12	0	0
20 C1O1 KG/HR	0	0		107.54	29.12	0	0
21 C102 KG/HR	4.0432	0	6.8742	0	123.27	0	D
22 H2O KG/HR	. 0	0	0.5742	0	82.859	0	0
23 H2 KG/HR	0	D	o	0	02.639	٥	0
24 C2H6 KG/HR	3.1079	0	6.0932	0	0	0	
25 C3H8 KG/HR	0.50641	0	1.7685	0	0	0	0
26 C4H10 KG/HR	0.60074	0	1,7665	0	0		0
27 C5H12 KG/HR	0.00074	0	6.0918	0	0	0	0
28 Fe3C1 KG/HR	0	0	0.0310	0	0	0	
Element Mass Flow Rat						- U	U
1H 1	4.5769	89.521	9.272	o	9.272	o	0
2C 6	15,683	03.321	33.643			_	
3 N 7	0	0	03.043	616.97	33.643 616.97	0	0
40 8	2.9398	710.48	4.9981	616,97 187,34	192.34	65.044	254.00
5 Na 11	2.3030	710.48	4.5501	107.34	.0		354.08
6 Mg 12	0	0	٥	0	0	0 024002	0.086136
7 Al 13	0	0	0	0		0.024993	0.2801
8 Si 14	0		0	0		0.98695	4.4244
9 P 15	0				0	5.3851	8.4667
10 S 16	0	0	0	0	- 0	0.15333	0.55732
11 K 19		0		0	.0	0.033152	0.023222
12 Ca 20	0	0	. 0	- 0	0	0	0.096387
	. 0	0	0	0	0	0.044426	4.73
13 Ti 22	0	0	0	0	0	0.099375	0
15 Mn 25	0	0	0	0	0	0.12837	0.4496
16 Fe 26	0	0	이	0	이	135.3	787.89

HYLSA PROJECT

INPUT DATA

TITLE : HYLSA PROJECT

DATA STORAGE FILE NAME : hylsapm8V.sfw
HEAT BALANCE OPTION : ON
UNITS OF MASS/TIME : KG/HR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 22 21 22 23 24 25 27	Fe101F Fe1 F Ca101C Mg101M A1203A Si102S Mn101M V205 V Ti102T S1 S P1 P Na201N K201 K C1 C H20 H C1H4 C N2 N O2 O C101 C C102 C H20 H C2H6 C C3H8 C C4H10C C5H12C	a101SI1 g101SI1 1203SI1 i102SI1 n101SI1 205 SI1 i102SI1 1 SI1 201 SI1 201 SI1 201 SI1 20 LI3 1H4 GC8 2 GC8 2 GC8 101 GC8 102 GC8 20 GC8	159.6922 71.8464 55.8470 56.0794 40.3114 101.9612 60.0848 70.9374 181.8810 79.8988 32.0640 30.9738 61.9790 94.1954 12.0112 18.0153 16.0430 28.0134 31.9988 28.0106 44.0100 18.0153 2.0159 30.07701 44.0972 58.1243 72.1514 179.5521	PHC 5.2400 5.7000 7.8600 3.3100 3.5800 3.96500 5.4500 3.3570 4.2600 2.0000 1.8200 2.2700 2.3200 2.2500 1.0000 0.0012 0.0014 0.0012 0.0020 0.0008 0.0001 0.0020 0.0020 0.0026 0.0032 1.0000	CMW 0.0000	SG: 0.0000	F	
ROW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 33 24 25 26 27	CNM Fe203 Fe101 Fe1 Ca101 Mg101 A1203 Si102 Mn101 V205 Ti102 S1 P1 Na201 K201 C1 H20 C1H4 N2 02 C101 C102 H20	REFEREN B672158 BAK2248 B672151 B672098 B672227 B672042 B672232 B672232 B6722460 B672235 B672282 B672257 B672282 B672257 B672257 B672209 B672180 B6772217 B672277 B672277 B672277 B672277 B6722182 B672182 B672182 B6771332			HTE-A 49 46 54 -8 33 14 15 12 12 13 16 16 16 17 17 17 17 17 17 17	HTE-B .1517 .5950 .0914 .0730 .8081 .9653 .1651 .8451 .3186 .8540 .4133	HTE- -3.8751 9.1416 -1.3293 0.4606 0.3610 1.0071 -0.5456 1.0861 6.3456 0.6334 56.5440 -11.6659 9.6170 2.0456 0.2246 2.7637 2.9907 0.2525 0.2720 0.2285 0.3891 1.3643 9.4527 43.9657 11.3643 9.5671 4.1225	-C HTE-D 21.9462 -21.4692 11.6233 2.0088 3.1765 11.1085 8.8977 0.6565 3.2973 3.4762 -14.3084 0.0000 -10.1495 1.3980 4.3597 0.0000 8.0422 1.7794 1.7697 1.9749 6.1869 0.3596 -0.2847 4.7951 -9.0826 18.9320 17.7272 -5.0322

HYLSA PROJECT

INPUT DATA

ROW	CNM	TEM	P RANG	ZF .	ο Κ	т	HTG-	70.	trm e						
1	Fe203	298.2	1800.			18232			HTG	_		HTG-C			ľG-D
2	Fe101	298.2	1650.			-5845			6418		3.77.			.2755	
	Fe1	298.2	1811.						5576		1.956			3814	
	Ca101	298.2	2000.		_	267	-		2139	4	1.092	25	~5.	4957	7
	Mg101	298.2				4609			8629		1.709			7418	
	A1203		2000.			13854			5487	~~ 4	1.491	16	-9.	9661	
	Si102	298.2	2327.			38644	11	-25.	8901	-10	.034	19		6544	
	Mn101	298.2	2000.		-2	21034	12		8483		.149			5464	
	V205	298.2	1500.			-8803		-17.	6692		.745			5421	
10	V205	298.2	950.	0	-3	6442	:3	-29.	8510		.317	-		1309	
10	Ti102	298.2	2000.		-2	1792	:3	-19.	7530		.509				
	S1	298.2	388.	4		-570			4302		.663			7172	
	P1	298.2	317.	3		~253			8556					4073	
	Na201	298.2	1300.			9558			3198	71	.426	8		0000	
14	K201	298.2	1100.			7673		-36	1416	-11	.202	3		1549	
15	C1	298.2	3000.			240		-20.	1416		.711		-8.	8698	
16	H20	298.2	373.					-3.	3866		.583		-5.	1587	
17	C1H4	298.2	2000.			7063	-	-1.	0739		.425		0.	0000	
18		298.2	3000.	0	_	1467		~45.			.178		-6.	9854	
19	_	298.2				507		-51.		-2	.235	8	-9.	9139	
	C101	298.2	3000.			539	-	-54.		-2	.353	5 .		5960	
21	C102		3000.			2127		-52.		-2	.256	9 .	-10.	0674	
	H2O	298.2	3000.	-		8643	_	-58.	7976	-3	.777			3476	
23		298.2	2000.			5421.	2	-48.	4557		.871			7579	
		298.2	3000.			486	3	-36.	6465		.103			3536	
	C2H6	298.2	1000.		_	1982	1	-48.2	2326	-15	.860	a a		9266	
	С3Н8	298.2	1000.			842		-33.		-36	. 258.	5			
	C4H10	298.2	1500.0)		2433		-69.8			.651			8620	
27	C5H12	298.2	1500.0)		27854		-78.3	1100		. 744:		-13.:		
28	Fe3C1	298.2	1400.0)		15085		-32.7	7005	124	- /44.		-15.0	5889	
					•			J2.	1003	-13	. 662	5 -	16.6	5593	
	FLOL		FLO												
	TYP LABEL		1	2	3	4		_	-	_					
NO	OPR UNIT PRO	OCESS		:S2	IS3		5 IS5	6	7	8	9	10	11	12	13
1	SEC HYLSA A	PM.	0	.52	133				INV		OS2		OS4	OS5	086
2	MIX ORE/PELI	ET MIYED	34	35	0	. 0	0	0	0	0	0	0	0	0	0
3 .	SPP REACTOR	251 11177717			-	0	0	0	0	1	0	0	0	0	0
4	HTX REDUCIN	CAC timy	1	2	29	0	0	0	0	3	4	0	0	0	Ó
5	SPP QUENCH 7	GWO UIV	9	0	0	4	0	0	0	10	11	0	0	0	ō
6	SUB SPLITTER	OWER	11	5	0	0	0	0	0	6	7	0	Ô	ō	Ö
7	DMC COMPERS		7	0	0	0	0	0	0	21	20	0	Õ	Õ	ŏ
8 5	PMC COMPRESS	SOR	20	0	0	0	0	0	0	22	0	ŏ	. 0	0	0
9 9	SPP REFORMER		15	16	0	0	0	0	0	17	Õ	0	0	0	0
70	SPP REFORMER	HEATER	31	32	0	0	0	0	0	33	Ö	ő	0	-	-
10 3	SPP REF. GAS	QUENCH	17	30	0	0	Ô	Ö	0	28	23	0		0	0
11 5	SPC CO2 ABSC	RBER	23	0	0	0	Ö	ŏ	ő	8	24	_	0	0	0
12 N	MIXER		22	8	ō	Ö	ő	0	0	9		0	0	0	0
13 F	HTX PRO. GAS	HEATER	10	ō	Õ	12	13	21	0		0	0	0	0	0
			•	-	~		10	Z.1	U	19	14	0	0	0	0

HYLSA PROJECT

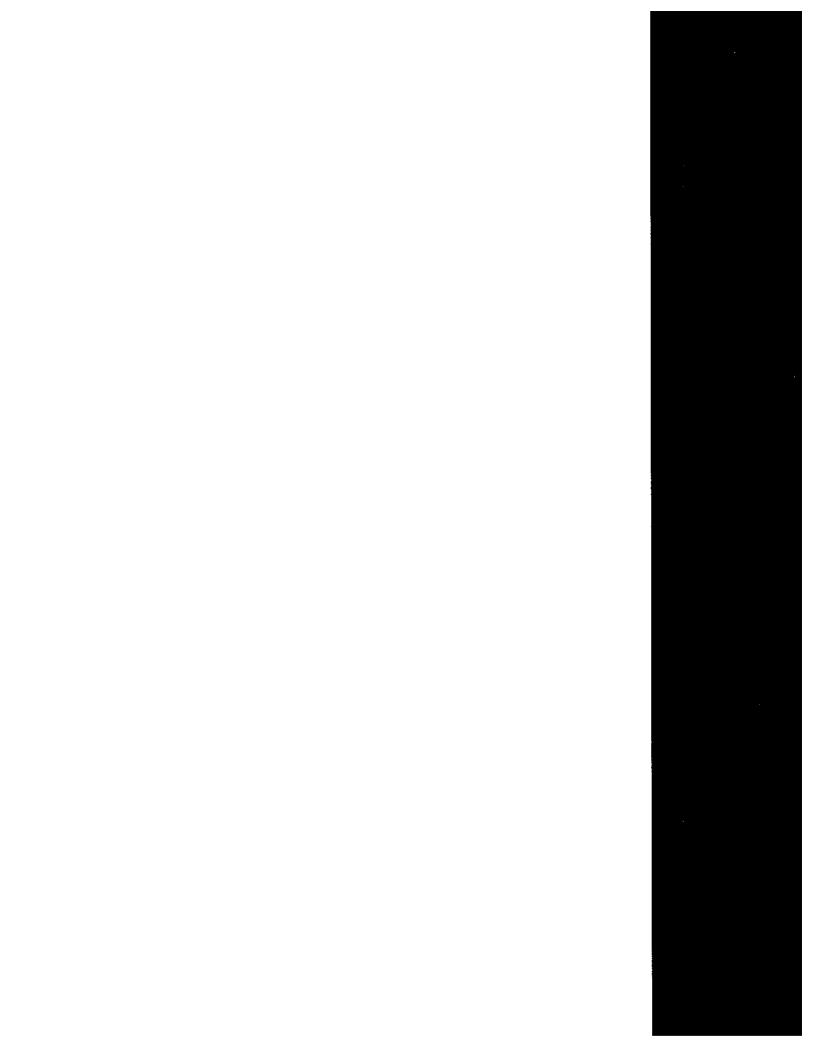
OP	PROCESS STEP	INPUT STREAM	HEAT	HEAT BA HEAT SOLUT	ENERGY	HEAT		OUTPUT	TOTAL
1	HYLSA APM		0				++-	+	
2	ORE/PELLET MIXER	1064	0	Ü	0	0	0	0	0
			-218320	Û	0	0	0	-1064	0
4	REDUCIN GAS HTX	337220	-ZI83ZU	0	0	-27985	0~:	371798	0
5	QUENCH TOWER		0.44070	Ü	0	0	0-3	337220	ñ
	SPLITTER		244878	0	0	0	0-3	310140	ñ
	COMPRESSOR	27616	0	0	0	0		-27616	n
	REFORMER	26644	0	0	0	0		-26644	n
			-267587	0	0	0	553514-3		0
	555	1774		0	0-	553514	95278 -		0
17	REF. GAS QUENCH	281931	75406	0	. 0	0		357337	0
	CO2 ABSORBER MIXER	72416	0	0	0	ñ		-72416	0
		74890	0	0	Õ	n		-74890	U
13	PRO. GAS HEATER	166307	488436	0	Ō	ñ		- / 4 O J U	U

NO. STREAM	ST TEMP-C	REAM TEM	IPERATURES 'KCAL/HR	AND ENTHAL BTU/HR	PIES KJ/HR
1 SIZED ORE/PELLET 2 REDUCING GAS 3 DRI PRODUCT 4 REACTOR EXHAUST 5 QUENCH WATER 6 WARM WATER 7 COOLED REDUCING GAS 8 FRESH REFORMED GAS 9 COMB. REDUCING GAS 10 PREHEATED REDUCING GAS 11 RECYCLE REDUCING GAS 12 FUEL 13 AIR 14 EXHAUST 15 DESULFURIZED NATURAL GAS 16 WATER 17 REFORMED GAS	930.000 730.000 397.256 1.000 82.447 82.447 307.641 142.685 277.965 30.000 30.000 138.000 30.000 120.000 900.000 900.000 939.771 82.447 82.447	1706.00 1346.00 747.06 33.80 180.41 180.41 585.75 288.83 532.34 86.00 280.40 86.00 248.00 1652.00 32.00 1723.59 180.41 180.41	1064.00 616934.00 111496.00 260302.00 -108121.00 282524.00 27616.00 48246.00 74890.00 163837.00 163837.00 160.00 1339.00 21455.00 735.00 14491.00 301153.00 27783.00 633288.00 26644.00 972.00 26644.00	4221.0 2448194.0 442451.0 1032963.0 -429058.0 1121147.0 109589.0 191456.0 297188.0 650158.0 688041.0 5312.0 85140.0 2918.0 57503.0 1195070.0 110251.0 2513088.0 105733.0 105733.0	4450.0 2581254.0 466498.0 1089105.0 -452378.0 1182082.0 115545.0 201861.0 313341.0 685494.0 725437.0 669.0 5601.0 89768.0 3076.0 60629.0 1260022.0 116243.0 111479.0 4066.0 111479.0
35 PELLET	30.000 30.000	86.00 86.00	157.00 906.00	624.0 3596.0	658.0 3792.0

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

	STREAM -+	TIME	ĄCFM	SCFM	M3/HR	NM3/HR
2 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	REDUCING GAS REACTOR EXHAUST COOLED REDUCING GAS FRESH REFORMED GAS COMB. REDUCING GAS PREHEATED REDUCING GAS RECYCLE REDUCING GAS FUEL AIR EXHAUST DESULFURIZED NATURAL GAS WATER REFORMED GAS REDUCING GAS EQ 2 GAS TO COMPRESSOR TAIL GAS COMPRESSED GAS QUENCHED REFORMED GAS CO2 NATURAL GAS NATURAL GAS COMBUSTION AIR PREHEAT EXHAUST	100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000	1107.441 663.011 310.442 690.379 1807.866 2396.002 584.783 25.541 346.664 534.163 117.514 363.936 2317.709 894.313 5273.236 1123.284 40.968 241.761	1168.168 1201.397 894.313 324.690 1187.534 1201.397 23.013 312.358 354.875 105.885 252.853 539.643 894.313 1187.534 862.844 31.469 862.844	1881.554 1126.462 527.444 1172.962 3071.584 4070.833 993.553 43.394 588.987 907.549 199.658 618.331 3937.812 1519.448 8959.286 1908.472 69.605 410.755	1984.730 2041.186 1519.448 551.652 2017.633 2017.633 2041.186 39.100 530.700 602.936 179.900 429.600 916.859 1519.448 2017.633 1465.981 53.467 1465.981
	VOLUMETRIC FLOW	RATE OF S	TREAMS WI	TH LIQUID	S AND SOL	IDS ONLY
NO.	STREAM	TIME	USGPM	TDC	MO /III	
1 5 6 28 30 34 35	SIZED ORE/PELLET DRI PRODUCT QUENCH WATER WARM WATER WARM WATER QUENCH WATER ORE PELLET	100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000	1.18135 1.26888 19.81568 22.32712 5.88098 3.52279 0.18427 0.99708	0.074532 (0.080054 (1.250183 (1.408631 (1.4086	0.268315 0.288196 4.500658 5.071071 1.335724 0.800117 0.041853 0.226462	6.4396 6.9167 108.0158 121.7057 32.0574 19.2028 1.0045 5.4351

MASS FLOW RATES - KG/HR


NO. STREAM	KG/HR-SI	KG/HR-LI	KG/HR-GC	KG/HR-TC
14 EARAUSI 15 DESULFURIZED NATURAL GAS 16 WATER 17 REFORMED GAS 18 19 REDUCING GAS EQ 2 20 GAS TO COMPRESSOR 21 TAIL GAS 22 COMPRESSED GAS 23 QUENCHED REFORMED GAS 24 CO2 26 28 WARM WATER 29 NATURAL GAS 30 QUENCH WATER 31 NATURAL GAS	1368.280 0.000 1001.977 0.000	0.000 0.000 0.000 4500.000 4919.349 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 614.814 0.000 1004.317 0.000 584.968 49.616 614.000 1004.317 35.241 683.094 738.920 162.147 345.293 507.439 584.968 614.000 564.384 20.584 564.384 378.308 328.692 327.736 0.000 23.200 0.000 47.913	1368.280 614.814 1001.977 1004.317 4500.000 4919.349 584.968 49.616 614.000 1004.317 35.241 683.094 738.920 162.147 345.293 507.439 584.968 614.000 564.384 20.584 564.384 378.308 328.692 327.736 929.132 23.200 800.000 47.913
32 COMBUSTION AIR PREHEAT 33 EXHAUST 34 ORE 35 PELLET	0.000 0.000 0.000 207.200 1161.080	0.000 0.000 0.000 0.000		

SPECIFIC GRAVITIES

			-					
NO.	LIDS - KG/HR STREAM SIZED ORE/PELLET	Fe203	Fe101	Fe1	Ca101	Mg101	A 1203	Si102
1 3 34	DRI PRODUCT	0.00	83.6119	701.784	6.68032 6.68032	0.50587	10.2246	29.6332 29.6332
35	5 PELLET	1123.11	3.0188	0.000	6.61816	0.46443	8.3598	18.1128
NO.	JDS - KG/HR STREAM	Mn101	V205	Ti102	S1	₽1	Na201	K201
1	SIZED ORE/PELLET DRI PRODUCT	0.74630	0.00000	0.16576	0.05637	+ 0.71065	0.11611	0.11611
34	ORE	0.74630	0.00000	0.16576	0.05637	0.71065	0.11611	0.11611
35	DRI PRODUCT ORE PELLET	0.58054	0.00000	0.00000	0.03315	0.15333	0.00000	0.00000
SOL	IDS - KG/HR STREAM							
3	DRI PRODUCT	0.00000	167 625					
SOT	IDS WEIGHT DEPOSIT							
ΝΟ.	IDS - WEIGHT PERCENT STREAM + SIZED ORE/PELLET	Fe203	Fe101	Fel	Ca101	Mg101	Al203	Si102
1	SIZED ORE/PELLET DRI PRODUCT ORE PELLET	96.0380	0.38417	0.0000	0.48823	0.03697	0.74726	2.16572
34	ORE PRODUCT	0.0000	8.34470	70.0400	0.66671	0.05049	1.02044	2.95747
35	PELLET	96.7300	0.26000	0.0000	0.03000	0.02000	0.90000	5.56000
SOL:	IDS - WEIGHT PERCENT STREAM							
7	STREAM SIZED ORE/PELLET				.~==~+ 2T	+ FT	Na201	K201
3	DRI PRODUCT	0.05454	0.00000	0.01211	0.00412	0.05194	0.00849	0.00849
34	ORE	0.08000	0.00000	0.01654	0.00563	0.07092	0.01159	0.01159
35	SIZED ORE/PELLET DRI PRODUCT ORE PELLET	0.05000	0.00000	0.00000	0.00200	0.04800	0.01000	0.00000
SOLI	DS - WEIGHT PERCENT							
+ 3	STREAM DRI PRODUCT	-++						
		0.00000	16.7295					
NO.	OUS - KG/HR STREAM	H2O						
5	QUENCH WATER	4500.00						
- 6 28	WARM WATER WARM WATER	4919.35						•
30	QUENCH WATER	929.13 800.00						
AQUE	OUS - WEIGHT PERCENT	1100						
+ 5 (QUENCH WATER	-+					·	
6 1	WARM WATER	100.000						
28 1	WARM WATER WARM WATER	100.000						
30 (QUENCH WATER	100.000						
AQUEO	OUS - GRAMS PER LITER STREAM	H20						
5 (OUENCH WATED	999.85						
6 V	VARM WATER	970.08						
20 1	VARM WATER QUENCH WATER	695.60						
ي ن ن	SOTHOU MUTCK	999.85						

GAS:	EOUS - KG/HR							
NO.	EOUS - KG/HR STREAM	C1H4 +	N2	02	C101	C102	H20	H2
2	REDUCING GAS REACTOR EXHAUST COOLED REDUCING GAS FRESH REFORMED GAS COMB. REDUCING GAS PREHEATED REDUCING GAS RECYCLE REDUCING GAS FUEL AIR EXHAUST DESULFURIZED NATURAL GAS	54.693	0.000	0.000	186.320	208.374	18.856	146.572
7	COOLED REDUCTIO CAS	55.685	0.000	0.000	188.907	217.965	437.734	104.026
8	FRESH REFORMED GAS	0.000	0.000	0.000	188.907	217.965	18.385	104.026
9	COMB. REDUCING GAS	53.726	0.000	0.000	182,260	210.295	17.738	149.010
10	PREHEATED REDUCING GAS	53.726	0.000	0.000	182.260	210.295	17.738	149.982
11	RECYCLE REDUCING GAS	55.685	0.000	0.000	188.907	217.965	437.734	104.026
12	FUEL	22.697	0.000	0.000	0.000	6.142	0.000	0.000
14	EXHVIIGA WTK	0.000	523.990	159.105	0.000	0.000	0.000	0.000
15	EXHAUST DESULFURIZED NATURAL GAS WATER REFORMED GAS REDUCING GAS EQ 2 GAS TO COMPRESSOR TAIL GAS COMPRESSED GAS QUENCHED REFORMED GAS CO2 NATURAL GAS NATURAL GAS COMBUSTION AIR PREHEAT EXHAUST	104 429	0.000	4.260	0.000	110.780	99.890	0.000
16	WATER	0.000	0.000	0.000	0.000	0.239	345 293	0.000
17	REFORMED GAS	26.107	0.000	0.000	48.013	254.571	129.132	49.616
18		55.685	0.000	0.000	188.907	217.965	18.385	104.026
19	REDUCING GAS EQ 2	53.726	0.000	0.000	182.260	210.295	17.738	149.982
21	TAIL CAS	53.726	0.000	0.000	182.260	210.295	17.738	100.366
22	COMPRESSED GAS	53.726	0.000	0.000	5.547 192 260	7.670	0.647	3.660
23	QUENCHED REFORMED GAS	26.107	0.000	0.000	48.013	254 571	17.738	100.366
24	CO2	26.107	0.000	0.000	48.013	254.571	0.000	0.000
26		36.895	25.356	0.000	145.169	11.510	14.230	94.575
29	NATURAL GAS	14.942	0.000	0.000	0.000	4.043	0.000	0.000
37	COMBUSTION ATD DEFERM	25.736	0.000	0.000	0.000	6.874	0.000	0.000
33	EXHAUST	0.000	616 970	187.337 29.120	0.000	0.000	0.000	0.000
							04.009	0.000
GASI	EOUS - KG/HR							
NO.	EOUS - KG/HR STREAM FUEL	C2H6 	C3H8 +	C4H10	C5H12			
12	FUEL	4.7210	0.76925	0.91255	0.00000			
12	DESULFURIZED NATURAL GAS	21.7215	3.53935	4.19867	0.00000			
∠9 31	NATURAL GAS NATURAL GAS	3.1079	0.50641	0.60074	0.00000			
71	MATORAL GAD	0.0932	1./6850	1.34956	0.03180			
GASI	EOUS - WEIGHT PERCENT							
NO.	COUS - WEIGHT PERCENT STREAM	C1H4	N2	02	C101	C102	H20	H2
2	REDUCING GAS REACTOR EXHAUST COOLED REDUCING GAS FRESH REFORMED GAS COMB. REDUCING GAS PREHEATED REDUCING GAS	8.8958	0.0000	0.0000	30.3051	33.8922	3 067	23 840
4	REACTOR EXHAUST	5.5446	0.0000	0.0000	18.8095	21,7028	43.585	10.358
7	COOLED REDUCING GAS	9.5193	0.0000	0.0000	32.2936	37.2609	3.143	17.783
8	FRESH REFORMED GAS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	100.000
10	PREHEATED REDUCING GAS	8.7501	0.0000	0.0000	29.6840	34.2500	2.889	24.427
	RECYCLE REDUCING GAS	5.5446	0.0000	0.0000	29.6840 18.8095	34.2300	2.889 43.585	24.421
	FUEL	64.4037	0.0000	0.0000		17.4279	0.000	10.358
	AIR			23.2918	0.0000	0.0000	0.000	0.000
	EXHAUST	0.0000	70.9129	0.5765	0.0000	14.9922	13.518	0.000
15 16	DESULFURIZED NATURAL GAS		0.0000	0.0000		17.4279	0.000	0.000
	WATER REFORMED GAS	0.0000	0.0000	0.0000	0.0000	0.0000		0.000
18	VELOVUED GW2	5.1449 9.5193	0.0000	0.0000	9.4618 32.2936	50.1678	25.448	9.778
	REDUCING GAS EQ 2	8.7501	0.0000	0.0000	29.6840	3/.2609	3.143 2.889	17.783 24.427
20	GAS TO COMPRESSOR	9.5193	0.0000		32.2936		3.143	17.783
21	TAIL GAS	9.5193	0.0000	0.0000	32.2936	37.2609	3.143	17.783
	COMPRESSED GAS	9.5193	0.0000	0.0000	32.2936	37.2609	3.143	17.783
	QUENCHED REFORMED GAS CO2	6.9010	0.0000		12.6915		0.000	13.115
. 26	CO2	7.9427	0.0000		14.6073		0.000	0.000
-	NATURAL GAS	11.2575 64.4037	7.7368	0.0000	44.2944	3.5121 17.4279	4.342	28.857
31	NATURAL GAS	53.7137	0.0000	0.0000		14.3472	0.000	0.000
32	COMBUSTION AIR PREHEAT	0.0000	76.7082		0.0000	0.0000	0.000	0.000
33	EXHAUST		72.3956	3.4170		14.4647	9.723	0.000

GAS NO	SEOUS - WEIGHT PERCENT STREAM	С2н6	С3н8	C4H10	C5H12			
15	P FUEL DESULFURIZED NATURAL GAS NATURAL GAS NATURAL GAS	13,3962	2.18280	2.58943	0.0000			
							Н20	H2
2 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 29 31 33 33	SEOUS - VOLUME PERCENT STREAM **	3.8500 3.8114 5.1202 0.0000 3.7203 3.7203 3.8114 81.1000 0.0000 81.1000 0.0000 3.9782 5.1202 3.7203 5.1202 5.1202 4.8234 17.8320 4.0810 81.1000 76.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	7.5120 7.4057 9.9486 0.0000 7.2285 7.4057 0.0000 0.0000 0.0000 0.0000 4.1904 9.9486 7.2285 9.9486 9.9486 9.9486 5.0807 18.7830 9.1968 0.0000 0.0000	5.3470 5.4384 7.3058 0.0000 5.3083 5.3083 5.4384 8.0000 9.3575 8.0000 0.0000 14.1409 7.3058 5.3083 7.3058 7.3058 7.3058 17.1452 63.3850 0.4641 8.0000 7.4000 0.0000	1.182 26.681 1.505 0.000 1.094 1.094 26.681 0.000 20.612 0.000 100.000 17.523 1.505 1.505 1.505 1.505 0.000 0.000 1.402 0.000 0.000	82.109 56.663 76.120 100.000 82.649 82.649 56.663 0.000 0.000 0.000 60.168 76.120 76.120 76.120 76.120 76.120 76.120 70.000 83.250 0.000 0.000
GASI	EOUS - VOLUME PERCENT STREAM FUEL DESULFURIZED NATURAL CAS	С2Н6	СЗН8	C4H10	C5H12	9.2337	13.162	0.000
12 15 29 31	FUEL DESULFURIZED NATURAL GAS NATURAL GAS NATURAL GAS	9.00000 9.00000 9.00000 9.60000	1.00000 1.00000 1.00000 1.00000	0.90000 0.90000 0.90000 1.10000	0.00000 0.00000 0.00000 4.00000			

APPENDIX E-3

TECNORED SHAFT MELTER

TECNORED PROCESS

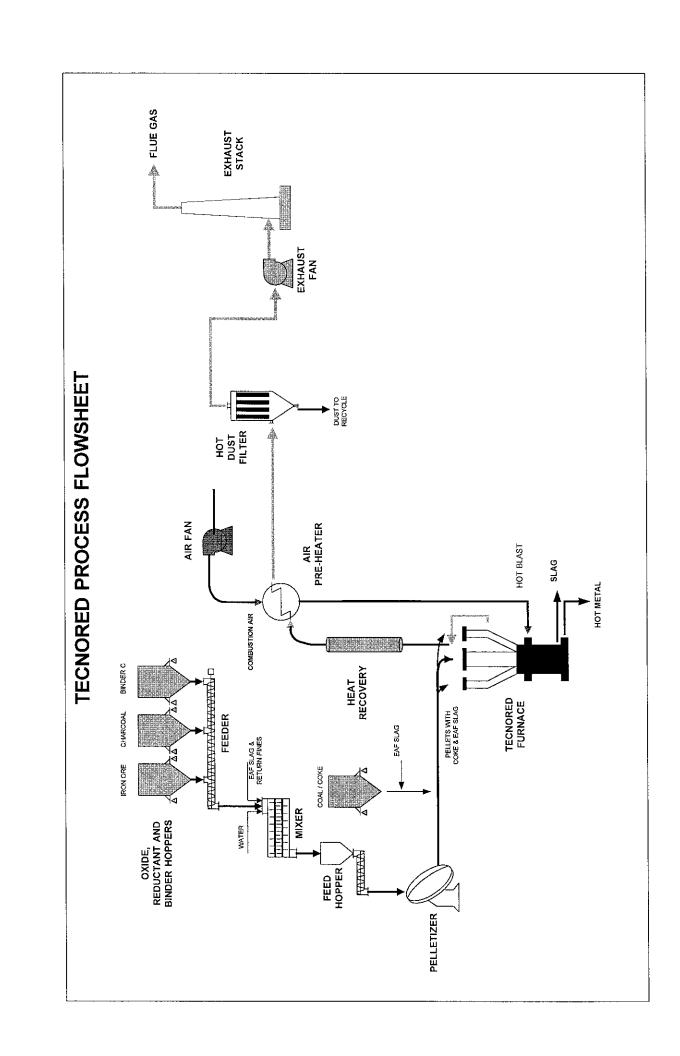
PROCESS BACKGROUND:

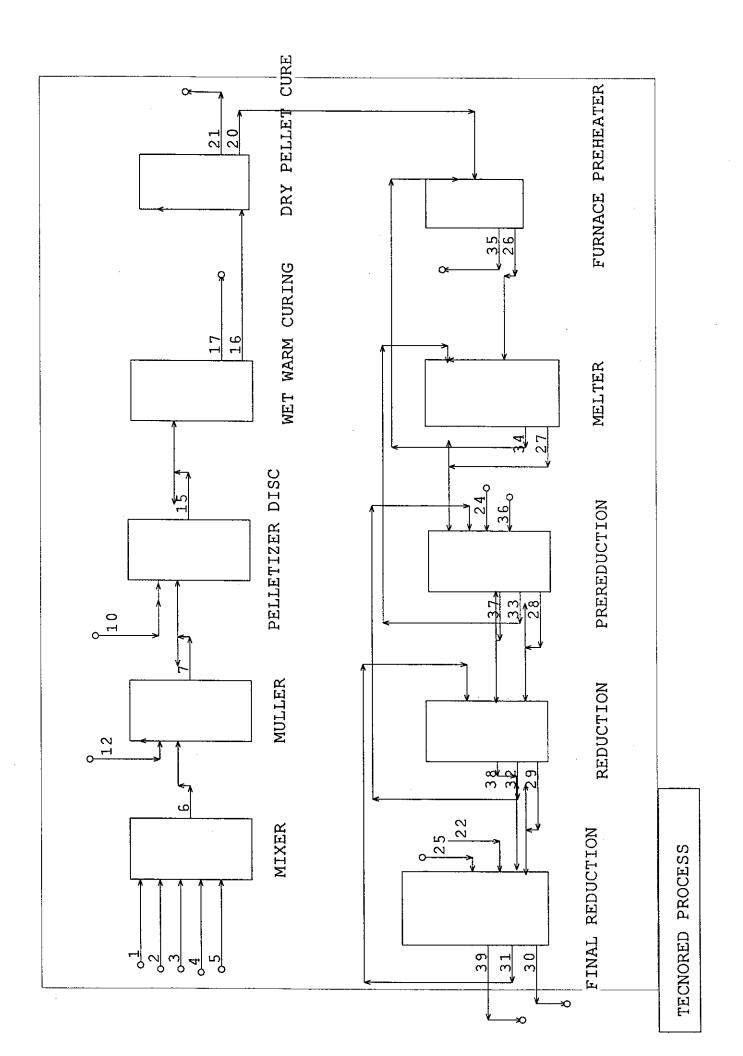
The Tecnored process is based upon a low pressure moving bed reduction furnace which reduces pellets made out of iron ore fines with cement and coke fines. Reduction is carried out at typical reduction temperatures. The process produces liquid pig iron.

PROCESS DESCRIPTION:

The Tecnored process consists of pelletizing of the iron ore fines with cement and coke fines. The pellet size is controlled for the optimum reaction in the reduction furnace. The pellets are cured and dried at 200C and fed to the top of the furnace. The furnace internal pressure is about 3.5 to 5.2 psig. The total furnace residence time is 30 to 40 minutes against 6 to 8 hours in blast furnace.

Lump coke is fed into side feeders in the furnace below the hot pellet area. Hot blast air at about 1550C is blown in through tuyeres located in the side of the furnace to provide combustion air for the coke. A small amount of furnace gas is allowed to flow through the side feeders to use for pet coke drying and preheating. Cold blast air is blown in at a higher point to promote post combustion of CO in the upper shaft. The use of coke with sulfur (pet coke) necessitates an elaborate furnace clean-up system in order to meet environmental regulations.


The pig iron produced is tapped into a ladle on a ladle car, which can tilt the ladle for deslagging. The liquid iron is desulfurized in the ladle, and slag raked into a slag pot.


PROCESS ADVANTAGES

Low cost raw materials

Low metling costs using low cost fuels to reduce electric power and electrode cost.

High productivity and energy efficiency in the furnace Full metallization (upto 99%)

Tecnored Process --- MetSim Model --- Description

The MetSim model for this process is largely based upon a production flowsheet for North Star BHP by Tecnored – Tecnologia de Auto-Reducao Ltd., Brazil.

Flowsheet Description

In this case, the Iron Ore Fines (Stream 1) is first mixed with Pet-Coke (Stream 2), Sand (Stream 3), Cement (Stream 4) and water (Stream 5) to form disc feed (Stream 6). This feed passes through a Muller where Return Fines (Stream Stream 12) are added and then through Pelletizing discs to form Green Pellets (Stream 15). These pellets then undergo two curing operations: Wet warm Curing and Dry Pellet Curing. These operations make the pellets (Stream 20) ready to be charged in the Furnace.

For this model, the Tecnored furnace has been divided into five unit operation steps: Preheater, Melter, Prereduction, Reduction and Final Reduction. The Furnace preheater represents the topmost part of the Tecnored furnace where the pellets are preheated and Top gases leave the Furnace at almost equilibrium conditions. In the Melter, the preheated pellets undergo further heating. The reducing gases (Stream 33) carry the thermal energy needed for this step. In the prereductor, Fe2O3 converts to Fe3O4 with the help of upcoming reducing gases (Stream 32). Also, Petroleum Coke (Stream 36) is added along with Cold Blast of Air (Stream 24) to help in reduction. The Coke reacts with Air to form CO and H2, main reductants. Next, in the Reductor, the pellets undergo further reduction from Fe3O4 to FeO with the help of upcoming reducing gases (Stream 31). The Pet-Coke moving downwards reacts with CO2 and H2O from reducing gases to form CO and H2. In the Final Reductor, the metallization takes place and FeO is converted into metallic Fe. The metallic iron and Slag (Stream 30) are withdrawn from the Furnace. Stream 39, the solid organic part, when combined with Stream 21, Fume losses is quantitatively similar to the Return Fines (Stream 12).

Model Assumptions:

Wet Warm Curing: 6616 kg/h of water comes out as Stream 17 as per NorthStar BHP flowsheet.

Dry Pellet Cure: 710 kg/h of solids loss is assumed.

Furnace Preheater: No carry-over of solid particles in the Top gas is assumed.

Prereduction: Complete reduction of Fe2O3 to Fe3O4 takes place in this unit operation.

Reduction: Again complete reduction of Fe3O4 to FeO takes place here.

Final Reduction: About 99.9% reduction of FeO to Fe takes place. 4 - 4.5% C shows up in the pig iron. Pig iron and Slag together form Stream 30. Stream 39 represents extra organic solids. This along with fume losses account for the Return Fines.

Results

It was decided to achieve same operating conditions as were outlined in the North Star BHP proposal by Tecnored. In the absence of information on coal/coke accurate compositions, a few assumptions were made. The model results are very close to the numbers provided by Tecnored.

TECNORED PROCESS --- STREAM SUMMARY

Stream Number	1	2	3		. 5						
Stream Names	Iron Ore Fine	Pet Coke Fin		Cement	Water			10			
KG/HR SOLIDS	51273	 	1747,5	3930,2	vvater	Disc Feed	Muller Disch	Water to Pell	Return Fines	Pelletizer Dis	Wet Cured P
KG/HR SLD-ORG	0		0			5,523		0	1431.7	58957	58957
KG/HR AQUEOUS	0		0		 		10242	0	1317	10242	10242
KG/HR MOLTEN1	0		0		6102.8	7085.3	7085.3	1556.8	0	8642.1	2025.6
KG/HR MOLTEN3	0					0	 `	0	. 0	0	(
KG/HR GASEOUS	0		0		0	0		- : 0	. 0	0	C
KG/HR TOTAL	51273	9500	1747.5	4912.7		0	0	r . O	0	. 0	C
Percent Solids	100	100	100	80.001	6102.8	73536	76285	1556.8	-2748.7	77841	71225
Sp.Gr.SOLIDS	5.1929	2.1267	2.6622		0	90,365	90.712	0	100	88.898	97.156
Sp.Gr.SLD-ORG	0.1020	2.25	2.0022	3.2642	0	4.792	4.7176	0	2,9057	4.7176	4.7176
Sp.Gr.AQUEOUS	1 - 0	2.23		0	0	2.25	2.25	. 0	2.25	2.25	2.25
Sp.Gr.MOLTEN1	- 0		0	0.99826	0.99826	0.99826	0.99801	0.99826	0	0.99803	0.97766
Sp.Gr.MOLTEN3	0		- 0	0	. 0	0	O	0	0	0	
Sp.Gr.GASEOUS	0	0	0	0	0	0	0	0	. 0	0	0
Sp.Gr.TOTAL	5.1929	0 0 (04	0	0	0	0	0	0	- 0	0	
Temperature C		2.2421	2.6622	2.2451	0.99826	3.1877	3.159	0.99826	2.5497	3.0279	3.7249
Pressure kPa	20	20	20	20	20	20	21.233	- 20	80	21.115	70
Gas nm3/hr	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33
Sol/Liq m3/hr	0	0	0	0	. 0	0	0	0	0	0	000
	9.8737	4.237	0.65641	2.1882	6.1134	23.069	24.149	1:5595	1.0781	25.708	19,121
Sol/Liq gpm	43.472	18.655	2.8901	9.6344	26.917	101.57	106.32	6.8663	4.7465	113,19	84.187
Component Mass Flow Ra	1 — · · · · · ·								4.7 100	110,19	04,187
1 Fe2O3 KG/HR	50365	0	0	0	0	50365	50938	0	572.82	50938	50000
2 Fe3O4 KG/HR	0	이	o	0	0	0	0	0	0, 2.02	50936	50938
4 Si102 KG/HR	427.89	. 0	1712.6	652.41	0	2792.9	2835,8	- 0	42.951	2835.8	0
5 Al2O3 KG/HR	182.64	6.0375	0	193.37	0	382.04	389.63	- 0	7.588		2835,8
6 Ca1O1 KG/HR	0	0	17.475	2582.1	0	2599.6	2699.8	0		389.63	389,63
7 Mg101 KG/HR	0	0	17.475	393.02	0,	410.5	410.5	- 0	100.22	2699.8	2699.8
9 Fe1O1 KG/HR	0	0	0	109.26		109.26	109.26	- 0	0	410.5	410.5
10 Mn101 KG/HR	297.44	0	0	0	0	297.44	297,44	- 0	0	109.26	109.26
13 S1 KG/HR	0	28.75	0	0	0	28.75	65.258	0	0	297.44	297.44
14 C1 KG/HR	0	540.21	0	o	0	540.21	1211.8		36.508	65.258	65.258
15 C1 KG/HR	0	8925	0	ō		8925	10242	0	671.61	1211.8	1211.8
16 H2O KG/HR	0	0	0	982.5	6102.8	7085.3	7085.3	0	1317	10242	10242
7 Fe1 KG/HR	0	0	0	0	0	0		1556.8	0	8642.1	2025.6
19 C1 KG/HR	0	0	Ö	0	0	0	0	- 0	· 0	0	0
22 C6H14 KG/HR	0	0	0			0		0	<u> </u>	0	0
3 C7H16 KG/HR	0	0	0	0			0	0	. 0	0	0
24 Ca1O1 KG/HR	0	0	0	0	- 0	0	0	0	0	0	0
6 Si102 KG/HR	0	0	0		0	- 0	0	0	0		0
8 AI2O3 KG/HR	0	0.	0	0	0	0	0	0	0	0	· 0
0 Mn101 KG/HR	0	0	0		- 3		- 0	0	. 0	0	0
1 Fe101 KG/HR	0	0	- 0	- 0	- 0	0	0	0	0	0	0
2 Mg1O1 KG/HR	0	0	0	- 0		. 0	0	0	. 0	0	0
3 N2 KG/HR	0	0	o	-		- 0	0	. 0	. 0	. 0	0
4 02 KG/HR	0	0	- 0	- 0	0	0	0	0		0	0
5 H2 KG/HR	0	- 0	0	0		0	0	0	0	C	0
6 CO KG/HR	0	0	0	. 0	0	0	0	0	0	0	0
7 CO2 KG/HR	0	0	0.		0	0	0	0	0	0	0
lement Mass Flow Rates			<u> </u>	0	0		0	0	0	. 0	0
H 1	0.	0		400.5		· · · · · · · · · · · · · · · · · · ·					
C 6	0	9465.2	0	109.94	682.91	792.85	792.85	174.21	0	967.06	226.67
N 7	0	0				9465.2	11454	0	1988.6	11454	11454
0.8			0	0			0	0	0	0	0
Mg 12	15519	2.8422	923.96	2228	5419.9	24094	24321	1382.6	227.21	25704	19827
Al 13		0 4050	10.539	237.03	D	247.57	247.57	0	. 0	247.57	247.57
Si 14	96.661	3.1953	0	102.34	0	202.2	206.21	0	4.016	206.21	206.21
\$ 16	200.01	0	800.51	304.96	0	1305.5	1325.6	. 0	20.077	1325.6	1325.6
		28.75	0	0	0	28.75	65.258	0	36.508	65.258	65.258
Ca 20	0		12.489	1845.5	0	1857.9	1929.6	0	71.627	1929.6	
Mn 25	230.35	0	0.	0	0	230.35	230.35			1929.0	1929.6
? Fe 26	35227	0				230.331	200,001	• ol	0.	230,35	230.35

TECNORED PROCESS --- STREAM SUMMARY

Stream Number	17	20	24			. 					
Stream Names		Dry Cured P	21 Fume Losse	Oxygen 22	 				28	29	30
KG/HR SOLIDS	0		710	 	Cold Blast	Hot Blast		Post combus		Reduced ore	Metal & Slag
KG/HR SLD-ORG	0		7,10					57050	55532	6887.8	161,73
KG/HR AQUEOUS	6616.5		0				7.1.00	10089	0		0
KG/HR MOLTEN1	0							0	0		
KG/HR MOLTEN3	0		0								36857
KG/HR GASEOUS	0		0		20184						6663.6
KG/HR TOTAL	6616.5	70515	710		20184		70545	0		0	0
Percent Solids	ō		100				70515	67139	55532	52170	43683
Sp.Gr.SOLIDS	0	4.7176	4.7176					100	100	13.203	0.37024
Sp.Gr.St.D-ORG	0	2.25	0		0			4.8288	4.7369	2.953	1
Sp.Gr.AQUEOUS	0.97766	0.9726	0		0			2.25	0	0	0.
Sp.Gr.MOLTEN1	0	0	0	0	0			0	0	0:	0
Sp.Gr.MOLTEN3	0	0	0		0			0	0	. 0	
Sp.Gr.GASEOUS	0	0	0	0.0013302	0.0011992	0.000313	0	01	0	1	3.0327
Sp.Gr.TOTAL	0.97766	3.7149	4.7176	0.0013302	0.0011992	0.000313	3.4515		. 0	0	0
Temperature C	70	78.44	70	20	20	850	350	4.1193	4.7369	1.0957	5.7789
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	530.78	728.62	1012.1	1447.1
Gas nm3/hr	0	0	0	369	15683	55963	701.33	101.33	. 101.33	101.33	108.2
Sol/Liq m3/hr	6.7677	18.981	0.1505	0	0	0	20.43	16,299	0	0	0
Sol/Liq gpm	29.797	83.572	0.66263	0	0	0	89.951		11.723	47.615	50.393
Component Mass Flow Rate	es	-					09.931	71.76	51.615	209,64	221.87
1 Fe2O3 KG/HR	0	50324	613.42	0	0	0	50324	50324			
2 Fe3O4 KG/HR	0	0	0	0	0	0	0	0 0	. 0	0	0
4 Si102 KG/HR	0	2801.7	34.151	0	0.	0	2801,7	2801.7	48644	0	0
5 Al2O3 KG/HR	0	384.94	4.6921	0	0	0	384.94	384.94	2866.5	2866.5	0
6 Ca1O1 KG/HR	.0	2667.3	32.513	0	0	- 0	2667.3	2667.3	384.94 2667.3	384.94	0
7 Mg101 KG/HR	. 0	405.55	4.9434	ō	0	0	405.55	405.55		2667.3	0
9 Fe1O1 KG/HR	0	107.94	1.3158	0	0	0	107.94	107.94	405.55 107.94	405.55	. 0
10 Mn101 KG/HR	0	293.86	3.5819	o.	o	0	293,86	293.86	293.86	107.94	- 0
13 S1 KG/HR	0	64,472	0.78588	0	0	0	64.472	64,472	161.73	. 293.86	101.70
14 C1 KG/HR	0	1197.2	14.594	0	0	0	0	0:	0	161.73	161.73
15 C1 KG/HR	0	10242	0	0	0	0	11439	: 10089	0	0	0
16 H2O KG/HR	6616.5	2025.6	0	0	0	0	2025.6	0	- 0	0	<u>.</u>
17 Fe1 KG/HR	0	. 0	0	. 0	0	0	0	. 0	- 0	- 0	35247
19 C1 KG/HR	0	0	0	0	0	0	0	0		0	1610.3
22 C6H14 KG/HR	0	0	0	0	0	0	o	0		- 0	1010.3
23 C7H16 KG/HR	0	0	0	0	0	O	0	. 0	0	0	
24 Ca1O1 KG/HR	0	0	0	0	0	ō,	0	0	- 0	0	2667.3
26 Si102 KG/HR	0	0	0	0	0	ō	0	. 0	- 0	0	2866.5
28 Al2O3 KG/HR	0	0	. 0	0	0	Ö	0	0	0	0	384.94
30 Mn101 KG/HR	0	0	0	0	0	0	Ö	0	- 0	0	293.86
31 Fe101 KG/HR	0	0	0	0	0	0	0	. 0	0	45282	45.39
32 Mg101 KG/HR	0	. 0	0	0	0	0	0	. 0	0	0	405.55
33 N2 KG/HR	0	0	0	0	15501	55315	0	. 0	0	0	700.00
34 02 KG/HR	0	0	0	526,79	4682.7	16710	0	0	0	- 0	
35 H2 KG/HR	0	0	0	0	0	0	0	0	0		
36 CO KG/HR	0	0	0	0	0	0	0	0	0	-	0
37 CO2 KG/HR	. 0	0	0	0	0	0	0	0	0	0	0
Element Mass Flow Rates									-		
1 H 1	740.39	226.67	0	0	. 0	0	226,67	0	0	o	. 0
2 C 6	0	11439	14.594	0	0	0	11439	10089	0	- 0	1610.3
3 N 7	0	0	0	0	15501	55315	0	0	0	0	
40 8	5876.1	19610	217.11	526.79	4682.7	16710	19610	17811	16165	12804	2706.1
6 Mg 12	0	244.59	2.9814	0	0	0	244.59	244.59	244.59	244.59	244.59
7 Al 13	0	203.73	2.4833	0	0	0	203.73	203.73	203.73	203.73	203.73
8 Si 14	0	1309.6	15.963	0	0	0	1309.6	1309.6	1339.9	1339.9	1339.9
9 S 16		64.472	0.78588	0	0	0	64.472	64.472	161.73	161.73	161.73
0 Ca 20	0	1906.3	23.237	0	0	0	1906.3	1906.3	1906.3	1906,3	1906.3
1 Mn 25 2 Fe 26	0	227.58	2.7741	0	0	0	227.58	227.58	227.58	227.58	227.58
7 FB 76	of	35282	430.07	0	0.	0	35282	35282	35282	35282	35282

TECNORED PROCESS --- STREAM SUMMARY

	31		33		35	36	37	-38	39
Stream Names	Gas off Final	Gas off Redu	Gas off Prere	Gas off Posto	Furnace gas	Solid fuel Car		- 30	Eq to Return
KG/HR SOLIDS	0		0	0		162.1	0	0	. (
KG/HR SLD-ORG	0	0	0	0	0	15242	20254	12780	1073.5
KG/HR AQUEOUS	0	0	0	0	0	810	0		10,00
KG/HR MOLTEN1	0	0	0	0	0	0		0	
KG/HR MOLTEN3	0	0	0	0		0		0	
KG/HR GASEOUS	92746	1.04E+05	1.31E+05	1.35E+05	1.35E+05	0	 		· C
KG/HR TOTAL	92746	1.04E+05	1.31E+05	1.35E+05	1.35E+05			10700	·
Percent Solids	0		0	0		16214	20254	12780	1073.5
Sp.Gr.SOLIDS	 ö		0		0	95.004	100	100	100
Sp.Gr.SLD-ORG		0		0	0	1.3317	0	0	
Sp.Gr.AQUEOUS	- 0	0	0	0	0	1.8	2.25	2.25	2.25
Sp.Gr.MOLTEN1	1 0		0	0	0	0.99507	0	0	
Sp.Gr.MOLTEN3	1 0		. 0	0	0	0	0	0	
		<u>~</u>	0	0	0	0	0	0	: c
Sp.Gr.GASEOUS	0.00023532	0.0002857	0.00034263	0.00041778	0.00058604	0	0	0	
Sp.Gr.TOTAL	0.00023532	0.0002857	0.00034263	0.00041778	0.00058604	1.7243	2.25	2.25	2.25
Temperature C	1447.1	1012.1	728.62	530.78	300	32	728.62	. 1012.1	1447.1
Pressure kPa	108.2	101.33	101.33	101.33	101.33	101.33	101,33	101.33	101.33
Gas nm3/hr	78618	77046	1.05E+05	1.10E+05	1.10E+05	0	0	Ö	
Sol/Liq m3/hr	0	0	0	0	0	9.4032	9.0019	5.68	0.47712
Sol/Liq gpm	0	0	0	. 0	0	41.401	39,634	25.008	2.1007
Component Mass Flow Ra	ates						55,554	20.000	2.100/
1 Fe2O3 KG/HR	0	0	0	0	0	0	0	0	
2 Fe3O4 KG/HR	0	0	0	0	0	0			0
4 Si1O2 KG/HR	0	0	0	0	0		0	. 0	
5 Al2O3 KG/HR	0	0	0	0		64.84	0	. 0	0
6 Ca1O1 KG/HR	0	0			0	0	0	0	0
7 Mg1O1 KG/HR	0	0	0	0	0	0	0	. 0	0
9 Fe1O1 KG/HR	0		0	0	0	0	- 0	0	. 0
		0.	0	0	0	0	0	0	0
10 Mn1O1 KG/HR	0	0	0	. 0	0	0	0	0	
13 S1 KG/HR	0	_0	0	0	0	97.26	0	0	0
14 C1 KG/HR	0	0	0	0	0	0	0	0	0
15 C1 KG/HR	0	0	0	0	0	12193	20254	12780	1073.5
16 H2O KG/HR	0	0		0	0	810	0	: 0,	0
17 Fe1 KG/HR	0	0	0	0	Ö	0	o	0	. 0
19 C1 KG/HR	0	0	0	0	0	0	0	- 0	. 0
22 C6H14 KG/HR	0	Ö	0	0	٥	1524.2	0	0	0
23 C7H16 KG/HR	0	0	O	0	0	1524.2	0	. 0	. 0
24 Ca1O1 KG/HR	0	0	0	0	0	0	- 0	0	
26 Si1O2 KG/HR	0	0	0	0	0	0			. 0
28 Al2O3 KG/HR	0	0	- 0	0	0.		0	- 0	0
30 Mn1O1 KG/HR	0	0		0		0	. 0	0	0
B1 Fe1O1 KG/HR	0	0				. 0	0	- 0	· · · 0
32 Mg101 KG/HR	0		- 0	- 0	0	0	0		. 0
		0 E5345	0 70040		0	0	0	0	0
33 N2 KG/HR	55315	55315	70816	70816	70816	0	0	0	0
34 02 KG/HR	5320	0	- 0	0	0	0	0	. 0	0
35 H2 KG/HR	0	0	585.52	812,19	812.19	0	0	0	0
36 CO KG/HR	8548.8	28210	37177	40327	40327	0	.0	0	. 0
7 CO2 KG/HR	23562	20056	22753	22753	22753	0	0	. 0	0
lement Mass Flow Rates									<u>-</u>
1 H 1	0	0	585.52	812.19	812.19	585.52	0	0	0
2C 6	10096	17570	22152	23502	23502	14747	20254	12780	1073.5
3 N 7	55315	55315	70816	70816	70816	14,41	20254		
40 8	27334	30696	37778	39577	39577			0	0
5 Mg 12	0	0	0			753.89	0	0	0
7 Al 13	0	- 0			0	0	0	- 0	0
3 Si 14				0	0	0	0	0	0
	. 0	0	0	0		30.309	0	0	0
9 S 16	. 0	0	0	0	0	97.26	0	0	0
0 Ca 20	0	0	0	0	0	0	0	0	0
1 Mn 25	0	. 0	0	0	0	0	0	0	0-
2 Fe 26	. 0								

INPUT DATA

TITLE: Tecnored Pig Iron Process
CASE: Mass and Energy Balance
DATA STORAGE FILE NAME: tecnored3.sfw
HEAT BALANCE OPTION: ON
UNITS OF MASS/TIME: KG/HR

_									
К	WO.			CHF			PHC	CMW	SGF
	1		3Fe20		159.6922	5.2	400	0.0000	0.0000
	2		4Fe30	04SI1	231.5386			0.0000	0.0000
	3	Fe1	Fe1	SI1	55.8470			0.0000	
	4	SilC	2Si10	2SI1	60.0848			0.0000	0.0000
	5		3A120		101.9612				0.0000
	6	Calc	1Ca10	11971	56.0794			0.0000	0.0000
	7	Ma10	1Mg10	11011				0.0000	0.0000
	8	Si1	Sil		40.3114			0.0000	0.0000
	9		1Fe10	SII	28.0860			0.000	0.0000
	و 10				71.8464		000	0.000	0.0000
			1Mn10		70.9374	5.4		0.000	0.0000
	11		Mn1	SIl	54.9380	7.2	000 (0.0000	0.0000
	12		Ca1	SIl	40.0800	1.5	400 (0.000	0.0000
	13	S1	S1	SI1	32.0640	1.0		0.000	0.0000
	1.4	C1	C1	SI1	12.0112	2.2		0.000	0.0000
	15	C1	C1	SO2	12.0112	2.2		0.0000	0.0000
	16	H20	H20	LI3	18.0153	1.0		0.0000	0.0000
	17	Fe1	Fe1	M15	55.8470	7.8		0.0000	
	18	Mn1	Mn1	M15	54.9380	7.2		0.0000	0.0000
	19	Cl	Cl	M15	12.0112	2.2		0.0000	0.0000
	20	Si1	Si1	M15	28.0860	1.0			0.0000
2	21	S1	S1	M15	32.0640	2.0		0.0000	0.0000
	22		4C6H1		86.1785	1.0		0.0000	0.0000
	23		6C7H1		100.2056			0.000	0.0000
	24		1Ca10		56.0794	1.0		0.000	0.0000
	25		2Ca1F			3.3		0.000	0.0000
	26		2Si10		78.0768	1.0		0.000	0.0000
	27	S110	23110 S1		60.0848	2.6	_ :	0.000	0.0000
	28			M37	32.0640	1.0		0.000	0.0000
	29		3A120		101.9612	3.9		0.000	0.0000
			1Ca1S		72.1440	2.50		0.000	0.0000
	30		lMn10		70.9374	5.45	500 O	0.000	0.0000
	31	reto.	lFe10	1M37	71.8464	1.00		0.000	0.0000
	32		lMg10		40.3114	3.58	300 o	0.000	0.0000
	33	N2	N2	GC8	28.0134	0.00	012 0	.0000	0.0000
	34	02	02	GC8	31.9988	0.00	014 0	.0000	0.0000
		H2	H2	GC8	2.0159	0.00		.0000	0.0000
	36	CO	CO	GC8	28.0106	0.00		.0000	0.0000
3	37	CO2	CO2	GC8	44.0100	0.00		.0000	0.0000
3	38	H20	H20	GC8	18.0153	0.00		.0000	0.0000
3	39	COS	COS	GC8	60.0746	0.00		.0000	
4	10	H2S1	H2S1	GC8	34.0799	0.00		.0000	0.0000
4	11	CH4	CH4	GC8	16.0430	0.00		.0000	0.0000
4	12	C2H6	C2H6	GC8	30.0701	0.00			0.0000
	13	S102	S102	GC8	64.0628	0.00		.0000	0.0000
	14	F1	F1	GC8	18.9984	0.00		.0000	0.0000
	15	s1	s1	GC8	32.0640		_	.0000	0.0000
•				500	32.0040	0.00)14 ()	.0000	0.0000

ROW	CNM	SOL	A	В	C 1	oH 1	Wi COV	ABC	
1	Fe203	0.00	0.00000	0.00000		0.00000		0.00000	0.00000
2	Fe304	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
3	Fel	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
4	Si102	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	A1203	0.00		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
6	Ca101	0.00			0.00000	0.00000	0.00000	0.00000	0.00000
7	Mg101	0.00	0.00000	0.00000	0.00000	0.00000		0.00000	0.00000
8	Sil	0.00		0.00000	0.00000	0.00000		0.00000	0.00000
9 10	Fe101 Mn101	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	Mn1		0.00000		0.00000	0.00000		0.00000	0.00000
	Cal		0.00000		0.00000	0.00000		0.00000	0.00000
13	S1		0.00000		0.00000	0.00000	0.00000	0.00000	0.00000
14	C1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
15	C1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	H2O	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
17	Fel	0.00	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000
18	Mn1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
19		0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
20	Si1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
21	S1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
22	C6H14	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	C7H16	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	Ca101	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
25	Ca1F2	0.00	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000
	Si102	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
27	S1		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	A1203	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	CalS1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	Mn101	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	Fe101 Mg101	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
33		0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
34		0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
35		0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
36		23.77	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	CO2		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	H20	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	COS	1150.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	H2S1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
41	CH4	24.40	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
42	C2H6		0.00000		0.00000	0.00000	0.00000	0.00000	0.00000
43	S102	0.00	0.00000	0.00000		0.00000	0.00000	0.00000	0.00000
	F1	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
45	S1	0.00	0.00000	0.00000			0.00000	0.00000	

	CNM Fe2O3	CRIT 0.000	T CRIT			INE VAPOI 0.00	R PRES A	B C HENRY
2	Fe304		0.0000			0.00	0.000	0.0
3	Fe1	0.000	0.0000			0.00	0.000	
4	Si102	0.000	0.0000			0.00	0.000	0.0 0.0
5	A1203	0.000	0.0000	0.000		0.00	0.000	0.0
6		0.000	0.0000	0.000		0.00	0.000	0.0
7	Mg101	0.000	0.0000	0.000		0.00	0.000	0.0
- 8	Si1	0.000	0.0000	0.000		0.00	0.000	0.0
9	Fe101	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
	Mn101	0.000	0.0000	0.000		0.00	0.000	0.0
	Mn1	0.000	0.0000	0.000		0.00	0.000	0.0
12	Ca1	0.000	0.0000	0.000		0.00	0.000	0.0
13	S1	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
14	C1	0.000	0.0000		0.00000	0.00	0.000	0.0
15	H2O	0.000	0.0000	0.000		0.00	0.000	0.0
17	Fe1	0.000	0.0000	0.000		0.00	0.000	0.0
18	Mn1	0.000	0.0000	0.000		0.00	0.000	0.0
19		0.000	0.0000	0.000		0.00	0.000	0.0
20	Si1	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
21		0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
	C6H14	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
23	C7H16	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
	Ca101	0.000	0.0000	0.000		0.00	0.000	0.0
	Ca1F2	0.000	0.0000		0.00000	0.00	0.000	0.0
	Si102	0.000	0.0000		0.00000	0.00	0.000	0.0
27	S1	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
28	Al203	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
29	CalS1	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0 0.0
	Mn101	0.000	0.0000		0.00000	0.00	0.000	0.0
31	Fe101	0.000	0.0000	0000	0.00000	0.00	0.000	0.0
	Mg101	0.000	0.0000		0.00000	0.00	0.000	0.0
	N2	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
34		0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
35		0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
36		133.400	35.4638	93.100	6.24020	230.27	260.010	63426.0
	CO2	304.200	74.8792	94.800		1347.79	273.000	1215.7
	H2O	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
	COS H2S1	378.000	62.6189			804.48	250.000	2812.5
	CH4	0.000	0.0000	0.000		0.00	0.000	0.0
	C2H6	0.000	46.9135	98.900			267.777	35389.5
	\$102	0.000	0.0000	0.000		0.00	0.000	0.0
	F1	0.000	0.0000	0.000	0.00000	0.00	0.000	0.0
	S1	0.000	0.0000		0.00000	0.00	0.000	0.0
			2.0000	0.000	0.00000	0.00	0.000	0.0

	CNM	REFERENCE	н25	HTE-A	HTE-B	HTE-C	HTE-D
	Fe203	1452165	-197094	-19152	43.5138	-2.6706	19.1514
	Fe304	B672160	-267300	-31312	71.0525	- 7.8736	32.0732
	Fe1	B672151	0	-7903	14.0914	-1.3293	11.6233
	Si102	B672387	-217720	-8654	19.1651	-0.5456	8.8977
	A1203	B672042	-400500	-12425	28.9653	1.0071	11.1085
	Ca101	B672098	-151790	-4315	12.0730	0.4606	2.0088
7	Mg101	B672227	-143760	-4612	11.8081	0.3610	3.1765
8	Sil	B672382	0	-2201	5.8656	0.2868	1.2792
9	Fe101	B672157	-65000	-3998	12.1207	1.0479	0.8685
10	Mn101	B672232	-92070	-3551	10.8451	1.0861	0.6565
11	Mn1	B672229	0	-578	2.8728	3.5454	-1.8081
12	Ca1	B672095	0	-1526	4.1007	2.8398	0.1633
13	S1	B672335	0	-9791		-10.4646	11.4735
14	C1	B672086	0	-2999	5.1802	0.2246	4.3597
	C1	B672086	0	-2999	5.1802	0.2246	4.3597
	H2O	B672180	-68315	-5071	16,1848	2.7637	0.0000
	Fe1	B672151	0	-2609	11.0000	0.0000	0.0000
	Mn1	B672229	Ö	-1889	11.0000	0.0000	-0.0001
	C1	B672086	Ō	-2999	5.1802	0.2246	4.3597
	Sil	B672382	Ŏ	9241	6.7069	-0.1082	7.0337
	S1	B672335	Ö	13015	-44.4133	56.5440	-14.3084
	C6H14	BAK1127	-47510	-14269	49.2252	-4.5786	0.0000
	C7H16	BAK1128	-53630	-15340	49.4035	6.8713	0.0000
	Ca101	B672098	-151790	-4315	12,0730	0.4606	2.0088
	CalF2	B674125	-293800	-10219	29.2494	-1.0693	55.2944
	Si102	B672387	-217720	-8654	19.1651	-0.5456	8.8977
	S1	B672335	0	-9791		-10.4646	11.4735
28	A1203	B672042	-400500	-19492	46.0000	0.0000	0.0000
	CalS1	B689066	-113100	-4092	12.2005	0.4197	1.2535
30	Mn101	1452186	-92070	-4090	11.6219	0.7611	1.6782
	Fe101	BAK2248	-62382	-3623	16.3000	0.0000	0.0000
	Mq101	B672227	-143760	-4612	11.8081	0.3610	3.1765
	N2	B672244	0	-2846	7.5728	0.2525	1.7794
	02	B672277	0	- 2979	7.9696	0.2720	1.7697
35	Н2	B672174	Ō	-1837	6.3659	0.4428	-0.2847
36	CO	YAWS	-26420	-1787	6.0661	0.9368	-0.3112
37	C02	YAWS	-94050	-3105	8.4720	2.5871	1.0415
38	H2O	B672182	-57795	-2403	7.2906	1.3003	0.3596
39	COS	YAWS	-33080	-3637	10.1215	2.0671	1.2989
	H2S1	B689140	-4930	-3383	8.6760	1.2152	2.1081
	CH4	YAWS	-17890	-1649	3.8363	7.1302	-0.3830
42	C2H6	B6772223	-20240	-5819	11.3274	9.4527	4.7951
	S102	B672348	-70940	-5603	13.1364	0.2172	5.0762
	F1	B672147	18860	-1326	5.0561	-0.0161	-0.5489
	S1	B672336	66200	-1100	4.9085	0.0430	-1.1282
					1.5000	3.0430	1.1202

RÓW	CNM	MHT.	P RANGE	٦V		ᆸᅲᄼᅩᅑ		rimo.	Б			-	
	Fe2O3	298.2	1800.0	OK.	-1824	HTG-A 16		HTG .5250		HTG 8053.			₹TG-D
	Fe304	298.2	1800.0		-2430			.6967	-L3.	. 9430		3.610	
3	Fe1	298.2	1811.0		26			.2139		.0925		5.819 5.495	
	Si102	298.2	2000.0		-2103			.8483		.1496		1.546	
5	A1203	298.2	2327.0		-3864			.8901		.0349		7.654	
6	Ca101	298.2	2000.0		-1460			.8629		7096		7.634	
7	Mg101	298.2	2000.0		-1385			.5487		4916		9.966	
8	Si1	298.2	1687.0		21			4390		6130		1.109	
9	Fe101	298.2	1600.0		-600			.0598		9536		9.222	
10	Mn101	298.2	1500.0		-880			.6692		7458		7.542	
	Mn1	298.2	1517.0		12			4008		8754		2.746	
	Cal	298.2	1112.0		9	50		1634		9597		2.218	
13		388.4	717.8		32			8450		2603		5.791	
	C1	298.2	3000.0		24			.3866		5836		.158	
15		298.2	3000.0		24			.3866		5836		5.158	
	H2O	298.2	373.2		-706	30	-1.	.0739		4253		0.000	
	Fe1	1811.0	3000.0		232		-21.	.2611		5440		582	
	Mn1	1517.0	2000.0		37.		-12.	2196		5366		1.290	
19		298.2	3000.0		24	05	-3.	.3866		5836		.158	
	Si1	1687.0	2000.0		149		-16.	.3206		5743		2.002	
21		298.2	388.4		-57		12.	4302	-23.	6630	5	5.407	'3
	C6H14	298.2	342.0		-539	50	-27.	.4686	-72.	7203	(0.000	0
	C7H16	298.2	371.0		-607			.1668	-81.	1627	(0.000	10
	Ca101	298.2	2000.0		-1460			.8629	-4.	7096	-10	.741	.8
	Ca1F2	1690.0	1800.0		-2819			.9150	-7.	6022	49	9.948	1
	Si102	298.2	2000.0		-2103		-16.	8483		1496		1.546	
27	A1203	388.4	717.8		32:		-10.	8450	-4.	2603	-5	.791	.5
	Ca1S1	2327.0	2500.0		-3646	48	-36,	7635	- 9.	5560		0.000	
	Mn101	298.2 298.2	2000.0		-1070			8175	-4.	7200		.198	
31	Fe101	1700.0	1800.0		-870			0502		1431		3.424	
	Mg101	298.2	3000.0		+289·			8962		3586		3.614	
33		298.2	3000.0		-1385 50			5487		4916		966	
34		298.2	3000.0					3044		2358		.913	
35		298.2	3000.0		53: 48:			8302		3535).596	
36		298.0	700.0		-253		-30. 46	6465 6664		1036		353	
	CO2	298.0	700.0		-932			5944		1645		.265	
	H2O	298.2	2000.0		-542		-40. -40.	4557		4916		425	
	COS	298.0	700.0		-320		-50.	9787	-3. -0	8711 1212		757	
	H2S1	298.2	2000.0		-12			4032		2869		2.870 2.096	
	CH4	298.0	700.0		-177			3353		8039		525	
42	C2H6	298.2	1000.0		-1982			2326		8609		926	
43	S102	298.2	3000.0		-627			8617		6510		324	
44	F1	298.2	3000.0		228	72 .	-42.	6161	-1	3003	-7	641	5
45	S1	298.2	3000.0		702	98 -	-44.	9239	-1.	3180	-7	768	8
	FLOL	298.2	3000.0 FLO		7029	98 -	-44.	6161 9239	-1.	3180	-7	7.768	8
λīΛ	TYP LABEL OPR UNIT PR	OCECE	1	2	3 4	5	- 6	7				.1 1	
NO 1	OFK UNIT PI	KUUESS	ISL IS								S3 05	4 OS	5 OS6
2	SEC TECNORI	PD BROCESS		0	0		2		0 0		0	0	0 0
	MIX MULLER		1	2	3		5		0 6		0	0	0 0
	MIX PELLET:	TRED DIGG		12	0		0		0 7	_	0	0	0 0
				10	0)	_	15		0	0	0 0
6	SPP WET WAS	TEM CONTING	15 16	0	0)		16		0	0	0 0
	SPP FURNACI			0	0		כ		20		0	0	0 0
	SPP MELTER	- EVEUDALE		34 33	20)	_	26		0	0	0 0
	SPP PREREDU	ICTION		32	0 24 :)		27		0	0	0 0
	SPP REDUCT:			32 31)	_	28		37	0	0 0
	SPP FINAL B			0 2T		22 38	_) 29) 30		38	0	0 0
	*		27	•	د ل د	دد ۱	,	0 (, 30	31	39	0	0 0

			HEA	T BALAN	NCE SUMM	ARY - 1	000 KC	AL/HOUR	
		INPUT	HEAT	HEAT	ENERGY	HEAT	HEAT	OUTPUT	
OP	PROCESS STEP	STREAM	REACT	SOLUT	INPUT	LOSS	REQRD	STREAM	TOTAL
	+	+ - +	+		+	+		++	
1	TECNORED PROCESS	0	0	0	0	. 0	0	0	0
2	MIXER	-49	0	0	0	0	0	49	0
3	MULLER	-27	0	0	0	0	0	27	0
4	PELLETIZER DISC	-34	0	0	0	0	0	34	0
5	WET WARM CURING	-34	0	0	0	0	884	-850	0
6	DRY PELLET CURE	552	0	0	110	0	0	-663	0
7	FURNACE PREHEATE	19356	0	0	0	0	-4227	-15130	0
8	MELTER	30942	-4711	. 0	0	0	0	-26231	0
9	PREREDUCTION	35391	3539	0	0	0	0	-38930	0
10	REDUCTION	50809	-5787	0	0	0	0	-45022	0
11	FINAL REDUCTION	32707	19040	0	0	0	0	-51747	0

NO.	STREAM	S TEMP-C	TREAM TE	MPERATURES A KCAL/HR	ND ENTHALPIE BTU/HR	S KJ/HR
1	++ Iron Ore Fines	20.00	68.00	-29710.00	-117900.0	-124308.0
_	Pet Coke Fines	20.00	68.00			
	Sand	20.00	68.00	-1387.00	-5506.0	-5805.0
	Cement	20.00	68.00	-8304.00	-32953.0	-34744.0
_	Water	20.00	68.00	-30469.00	82583.0 -5506.0 -32953.0 -120910.0 -194685.0	-127482.0
-	Disc Feed	20.00	68.00	-49060.00	-194685.0	-205266.0
-	Muller Discharge	21.23	70.22	-26666.00	-105819.0	-111571.0
10	Water to Pelletizer	20.00	68.00	-7772.00	-30844.0	-32520.0
	Return Fines	80.00	176.00	22394.00	88866.0	93696.0
	Pelletizer Discharge	21.12	70.01	-34439.00		-144091.0
	Wet Cured Pellets		158.00	552393.00	2192074.0	2311213.0
	Water Vapor	70.00	158.00	297405.00	1180200.0	1244344.0
	not used	70.00	158.00	17671.00	70126.0	73937.0
19	not used	70.00	158.00	100135.00	397369.0	418966.0
20	Dry Cured Pellets		173.19	658091.00	2611517.0	2753454.0
	*Fume Losses	70.00	158.00	4781.00		20002.0
22	Oxygen	20.00	68.00	-255.00	-1011.0	-1066.0
23	not used	20.00	68.00	21143.00	83901.0	88462.0
24	Cold Blast	20.00	68.00	-1078.00	-42/9.0	-4512.0
25	Hot Blast	850.00	1562.00	15495890.00	61492662.0	64834804.0
		350.00			21251122.0	
27	Post combust product	530.78	987.40	7531664.00	29888057.0	
28	Prereduced ore	728.62	1343.52	8534090.00	33866006.0	
29	Prereduced ore Reduced ore	1012.07	1853.73	12562707.00	49852850.0	52562366.0
30	Metal & Slag	1447.11	2636.80	13667709.00	54237851.0	57185693.0
	Gas off Final Reductor					
	Gas off Reductor	1012.07	1853.73	27811237.00	110363908.0	
33	Gas off Prereductor	728.62	1343.52	25588620.00	101543851.0	107062787.0
	Gas off Postcombustor					78238922.0
35	Furnace gas Solid fuel Carbon		572.00	9774409.00		
		32.00				
37			1343.52			
38			1853.73			
39	Eq to Return Fines	1447.11	2636.80	610464.00	2422519.0	2554183.0

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

	STREAM	TIME	ACFM	SCFM	M3/HR	NM3/HR
18 19 22 24 25 31 32 33 34	not used not used Oxygen Cold Blast Hot Blast Gas off Final Reductor Gas off Reductor Gas off Prereductor Gas off Postcombustor Furnace gas	15.0000 85.0000 100.0000 100.0000 85.0000 100.0000 100.0000	5685.5 5685.3 233.1 9906.5 135438.3 272915.4 213386.6 225607.1 189779.9	4833.37 4833.20 217.19 9230.67 32938.58 46272.97 45347.86 61511.30 64477.94	9659.7 9659.4	8211.9 8211.7 369.0 15683.0 55963.0 78618.3 77046.5 104508.4 109548.7

VOLUMETRIC FLOW RATE OF STREAMS WITH LIQUIDS AND SOLIDS ONLY

NO.	STREAM	TIME	USGPM	LPS	M3/HR	M3/DY
1	Trop Ove Fine	100 000	+ 	+	·	+
	Iron Ore Fines		43.4725		9.87374	
	Pet Coke Fines	100.0000		1.17695		
	Sand	100.0000		0.18234	0.65641	15.754
	Cement	100.0000		0.60784	2.18823	52.517
	Water	100.0000	26.9165	1.69818	6.11344	146.723
6	Disc Feed	100.0000	101.5685	6.40801	23.06885	553.652
7	Muller Discharge	100.0000	106.3228	6.70797	24.14869	579.568
10	Water to Pelletizer	100.0000	6.8663		1.55951	
12	Return Fines	100.0000	4.7465		1.07805	
15	Pelletizer Discharge		113.1899	7,14121	25.70837	
16	Wet Cured Pellets	100.0000			19.12114	458.907
17	Water Vapor	100.0000	29.7972		6.76772	
20	Dry Cured Pellets	100.0000	83.5722		18.98141	455.554
21	*Fume Losses	100.0000	0.6626		0.15050	
26	Preheat product	100.0000			20.43027	
	Post combust product	100.0000			16.29852	
	Prereduced ore	100.0000	51.6152		11.72316	281.356
29	Reduced ore	100.0000			47.61488	1142.757
		15.0000			50.39329	
	Solid fuel Carbon	100.0000	41.4010		9.40324	
37	Source race Carpon	100.0000				
38					9.00186	
	Po to Dotumo Bios-	100.0000				
39	Eq to Return Fines	TOO.0000	2.1007	0.13253	0.47712	11.451

MASS FLOW RATES - KG/HR

	STREAM t Iron Ore Fines	KG/HR-SI	KG/HR-SO	KG/HR-LI	KG/HR-M1	KG/HR-M3	KG/HR-GC	KG/HR-TC
1	Iron Ore Fines Pet Coke Fines Sand Cement Water Disc Feed Muller Discharge	51272.90	0.00	0.000	0.0	0.00	0.0	51272.9
2	Pet Coke Fines	575.00	8925.00	0.000	0.0		0.0	9500.0
3	Sand	1747.50	0.00	0.000	0.0	0.00	0.0	
4	Cement	3930.20	0.00	982.500	0.0			
5	Water	0.00	0.00	6102.800	0.0	0.00	0.0	
6	Disc Feed	57525.60	8925.00	7085.300	0.0	0.00	0.0	
					0.0		0.0	
10	Water to Pelletizer Return Fines	0.00	0.00	1556.800	0.0	0.00	0.0	
12	Return Fines	1431.70	1317.00	0.000	0.0	0.00	0.0	
15	Pelletizer Discharge	58957.30	10242.00	8642.100		0.00	0.0	
16	Wet Cured Pellets Water Vapor not used not used Dry Cured Pellets *Fume Losses	58957.30	10242.00	2025.600	0.0	0.00	0.0	
17	Water Vapor	0.00	0.00	6616.500	0.0			_
18	not used	0.00	0.00	39.722	0.0	0.00		3338.0
19	not used	0.00	0.00	39.728	0.0	0.00		3338.5
- 20	Dry Cured Pellets	58247.30	10242.00	2025.600	0.0			
21	*Fume Losses Oxygen Cold Blast Hot Blast	710.00	0.00	0.000	0.0	0.00	0.0	710.0
22	Oxygen	0.00	0.00	0.000		0.00	526.8	526.8
24	Cold Blast	0.00	0.00	0.000			20184.1	
25	Hot Blast	0.00	0.00	0.000	0.0 0.0 0.0 0.0	0.00	72024.7	72024.7
20	rrenear product	57050.07	11439.23	2025.600	0.0	0.00		
27	Post combust product	57050.07	10088.73	0.000	0.0	0.00	0.0	
28	Prereduced ore	55531.52	0.00	0.000	0.0	0.00	0.0	55531.5
29	Reduced ore	6887.84	0.00	0.000	0.0	10202.00	0.0	52170.2
30	Metal & Slag Gas off Final Reductor Gas off Reductor Gas off Prereductor Gas off Postcombustor Furnace gas Solid fuel Carbon	1078.22	0.00	0.000	245716.1	44423.69	0.0	291218.0
21	Gas off final Reductor	0.00	0.00	0.000	0.0		109112.4	109112.4
32	Gas off Reductor	0.00	0.00	0.000	0.0		103581.0	103581.0
22	Gas off Prereductor	0.00	0.00	0.000	0.0	0.00	131331.7	131331.7
34 3E	Gas off Postcombustor	0.00	0.00	0.000	0.0		134707.9	
20	rurnace gas	0.00	0.00	0.000	0.0	0.00	134707.9	134707.9
20	Solid fuel Carbon	162.10	15241.50	810.000	0.0	0.00	0.0	16213.6
37 38		0.00	20254.19	0.000	0.0	0.00	0.0	20254.2
	For to Dotume Pine	0.00	12780.10	0.000	0.0	0.00	0.0	
39	Eq to Return Fines	0.00	1073.53	0.000	0.0	0.00 0.00 0.00	0.0	1073.5

SPECIFIC GRAVITIES

NO.	STREAM	PCS	SG-SI	SG-SO	SG-LI	SG-M1	SG-M3	sg-gc	SG-TC
1	Iron Ore Fines	100.0000	5.1929	0.0000	0.0000	0.0000	0.0000	0.0000	5.1929
2	Pet Coke Fines	100.0000	2.1267	2.2500	0.0000	0.0000	0.0000	0.0000	2.2421
		100.0000	2.6622	0.0000	0.0000	0.0000	0.0000	0.0000	2.6622
4	Cement	80.0008	3.2642	0.0000	0.9983	0.0000	0.0000	0.0000	2.2451
5	Water	0.0000	0.0000	0.0000	0.9983	0.0000	0.0000	0.0000	0.9983
6	Water Disc Feed	90.3648	4.7920	2.2500	0.9983	0.0000	0.0000	0.0000	3.1877
7	Muller Discharge	90.7120	4.7176	2.2500	0.9980	0.0000	0.0000	0.0000	3.1590
10	Water to Pelletizer	0.0000	0.0000	0.0000	0.9983	0.0000	0.0000	0.0000	0.9983
12	Return Fines	100.0000	2.9057	2.2500	0.0000	0.0000	0.0000	0.0000	2.5497
15	Pelletizer Discharge	88.8978	4.7176	2.2500	0.9980	0.0000	0.0000	0.0000	3.0279
16	Wet Cured Pellets	97.1561	4.7176	2.2500	0.9777	0.0000	0.0000	0.0000	3.7249
17	Water Vapor	0.0000	0.0000	0.0000	0.9777	0.0000	0.0000	0.0000	0.9777
	not used	0.0000	0.0000	0.0000	0.9777	0.0000	0.0000	0.0003	0.0003
	not used	0.0000	0.0000	0.0000	0.9777	0.0000	0.0000	0.0003	0.0003
20		97.1274	4.7176	2.2500	0.9726	0.0000	0.0000	0.0000	3.7149
21	*Fume Losses	100.0000	4.7176	0.0000	0.0000	0.0000	0.0000	0.0000	4.7176
22	Oxygen Cold Blast Hot Blast	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0013
24	Cold Blast	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0012	0.0012
25	Hot Blast	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0003
26	Preheat product	97.1274	4.8288	2.2500	0.5736	0.0000	0.0000	0.0000	3.4515
	Post combust product		4.8288	2.2500	0.0000	0.0000	0.0000	0.0000	4.1193
	Prereduced ore		4.7369	0.0000	0.0000	0.0000	0.0000	0.0000	4.7369
29	Reduced ore	13.2026	2.9530	0.0000	0.0000	0.0000	1.0000	0.0000	1.0957
	Metal & Slag		1.0000	0.0000	0.0000	7.0879	3.0327	0.0000	5.7789
	Gas off Final Reductor		0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
32	Gas off Reductor Gas off Prereductor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0003
33	Gas off Prereductor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0003
34	Gas off Postcombustor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0006
	Solid fuel Carbon		1.3317	1.8000	0.9951	0.0000	0.0000	0.0000	1.7243
37		100.0000	0.0000	2.2500	0.0000	0.0000	0.0000	0.0000	2.2500
38		100.0000	0.0000	2.2500	0.0000	0.0000	0.0000	0.0000	2.2500
39	Eq to Return Fines	100.0000	0.0000	2.2500	0.0000	0.0000	0.0000	0.0000	2.2500

SOLIDS - KG/HR NO. STREAM	Fe203	Fe304	Fe1	Si102	A1203	Ca101	Mg101
SOLIDS - KG/HR NO. STREAM 1 Iron Ore Fines 2 Pet Coke Fines 3 Sand 4 Cement 6 Disc Feed 7 Muller Discharge 12 Return Fines 15 Pelletizer Discharge 16 Wet Cured Pellets 20 Dry Cured Pellets 21 *Fume Losses 23 not used 26 Preheat product 27 Post combust product 28 Prereduced ore 29 Reduced ore 36 Solid fuel Carbon	0.0 0.0 50364.9 50937.8 572.8 50937.8 50937.8 50324.3 613.4 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	1712.55 652.41 2792.86 2835.81 42.95 2835.81 2835.81 2801.66 34.15 769.46	0.000 193.366 382.041 389.629 7.588 389.629 389.629 384.937 4.692 0.000	17.48 2582.14 2599.62 2699.84 100.22 2699.84 2667.32 32.51 204.54	17.475 393.020 410.495 410.495 0.000 410.495 410.495 405.552 4.943 0.000
SOLIDS - KG/HR NO. STREAM	Si1	Fe101	Mn101	Mn1	Ca1	S1	C1
1 Iron Ore Fines 2 Pet Coke Fines 4 Cement 6 Disc Feed 7 Muller Discharge 12 Return Fines 15 Pelletizer Discharge 16 Wet Cured Pellets 20 Dry Cured Pellets 21 *Fume Losses 26 Preheat product 27 Post combust product 28 Prereduced ore 29 Reduced ore 30 Metal & Slag 36 Solid fuel Carbon	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 0.000 109.260 109.260 0.000 109.260 109.260 107.944 1.316 107.944 107.944 107.944 0.000 0.000	297.438 0.000 297.438 297.438 0.000 297.438 297.438 293.856 3.582 293.856 293.856 293.856 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 28.750 0.000 28.750 65.258 36.508 65.258 64.472 0.786 64.472 161.732 161.732 161.732 97.260	0.00 540.21 0.00 540.21 1211.82 671.61 1211.82 1211.82 1197.23 14.59 0.00 0.00 0.00 0.00 0.00 0.00
SOLIDS - WEIGHT PERCENT NO. STREAM	Fe203	Fe304	Fe1	Si102	Al203	Ca101	Mg101
1 Iron Ore Fines 2 Pet Coke Fines 3 Sand 4 Cement 6 Disc Feed 7 Muller Discharge 12 Return Fines 15 Pelletizer Discharge 16 Wet Cured Pellets 20 Dry Cured Pellets 21 *Fume Losses 23 not used 26 Preheat product 27 Post combust product 28 Prereduced ore 29 Reduced ore 36 Solid fuel Carbon	98.2291 0.0000 0.0000 87.5522 86.3977 40.0100 86.3977 86.3977 0.0000 88.2108 88.2108	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 87.5965 0.0000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.8345 0.0000 98.0000 16.6000 4.8550 4.8099 3.0000 4.8099 4.8099 4.8099 79.0000 4.9109	0.35621 1.05000 0.00000 4.92000 0.66412 0.66087 0.66087 0.66087 0.66087 0.66087 0.67473 0.67473 0.69319 5.58864	0.0000 0.0000 1.0000 65.7000 4.5191 4.5793 7.0000 4.5793 4.5793 4.5793 21.0000 4.6754 4.6754 4.8033 38.7251	0.0000 0.0000 1.0000 0.7136 0.6963 0.6963 0.6963 0.6963 0.6963 0.7109 0.7109 0.7303 5.8879

NO	IDS - WEIGHT PERCENT STREAM	Si1	Fe101	Mn101	Mn1	Ca1	S1	C1
1 2 4 6 7 12 15 16 20 21 26 27 28 29 30	Iron Ore Fines Pet Coke Fines Cement Disc Feed Muller Discharge Return Fines Pelletizer Discharge Wet Cured Pellets Dry Cured Pellets *Fume Losses Preheat product Post combust product Prereduced ore Reduced ore Metal & Slag Solid fuel Carbon	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 2.78000 0.18993 0.18532 0.00000 0.18532 0.18532 0.18532 0.18921 0.18921 0.19438 1.56716 0.00000 0.00000	0.58011 0.00000 0.00000 0.51705 0.50450 0.00000 0.50450 0.50450 0.51508 0.51508 0.52917 4.26630 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 5.000 0.050 0.111 2.550 0.111 0.111 0.111 0.113 0.113 0.291 2.348 100.000 60.000	0.0000 93.9500 0.0000 0.9391 2.0554 46.9100 2.0554 2.0554 2.0554 0.0000 0.0000 0.0000 0.0000 0.0000
SLD NO.	-ORG - KG/HR STREAM	C1	C6H14	C7H16				
2 6 7 12 15 16 20 23 26 27 36 37 38	-ORG - KG/HR STREAM +	8925.0 8925.0 10242.0 1317.0 10242.0 10242.0 12954.0 11439.2 10088.7 12193.2 20254.2 12780.1 1073.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 1143.00 0.00 0.00 1524.15 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 1143.00 0.00 1524.15 0.00 0.00				
SLE NO.	ORG - WEIGHT PERCENT STREAM	C1	C6H14	С7Н16				
2 6 7 12 15 16 20 23 26 27 36 37	Pet Coke Fines Disc Feed Muller Discharge Return Fines Pelletizer Discharge Wet Cured Pellets Dry Cured Pellets not used Preheat product Post combust product Solid fuel Carbon	100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7.5000 0.0000 0.0000 10.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7.5000 0.0000 0.0000 0.0000 0.0000				

NO.	OUS - KG/HR STREAM	H2O						
4 5 6 7 10 15 16 17 18 19 20 26	Cement Water Disc Feed Muller Discharge Water to Pelletizer Pelletizer Discharge Wet Cured Pellets Water Vapor not used	982.50 6102.80 7085.30 7085.30 1556.80 8642.10 2025.60 6616.50 5.96 33.77 2025.60 2025.60						
	COUS - WEIGHT PERCENT STREAM	, Н2О						
4 5 6 7 10 15 16 17 18 19 20 26	Cement	100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000						
NO.	EOUS - GRAMS PER LITER STREAM	Н2О						
4 5 6 7 10 15 16 17 18 19 20 26	Cement Water Disc Feed Muller Discharge Water to Pelletizer Pelletizer Discharge Wet Cured Pellets Water Vapor not used not used Dry Cured Pellets Preheat product Solid fuel Carbon	998.259 998.259 998.259 998.008 998.259 998.034 977.655 977.655 977.655 977.655						
	TEN1 - KG/HR STREAM +	Fe1	Mn1	C1	Si1	S1		
30	Metal & Slag	35247.1	0.00000	1610.29	0.00000	0.00000		
	TEN1 - WEIGHT PERCENT STREAM +	Fe1	Mn1	C1	Si1	S1		
30	Metal & Slag	95.6310	0.00000	4.36898	0.00000	0.00000		
MOI NO.	TEN3 - KG/HR STREAM	Ca101	Ca1F2	Si102	S1	A1203	Ca1S1	Mn101
30	Metal & Slag	2667.32	0.00000	2866.50	0.00000	384.937	0.00000	293.856

MOLTEN3 - KG/HR NO. STREAM	Fe101	Mg101					
29 Reduced ore 30 Metal & Slag	45282.4 45.4	0.000 405.552					
MOLTEN3 - WEIGHT PERCENT NO. STREAM	Ca101	CalF2	Si102	S1	A1203	CalS1	Mn101
30 Metal & Slag	40.0285	0.00000	43.0175	0.00000	5.77675	0.00000	4.40990
MOLTEN3 - WEIGHT PERCENT NO. STREAM	Fe101	Mg101		٠			
29 Reduced ore 30 Metal & Slag							
GASEOUS - KG/HR NO. STREAM	N2	02	Н2	co	CO2	Н2О	cos
GASEOUS - KG/HR NO. STREAM +	70816.3 70816.3 70816.3	0.0	585.520 812.188 812.188	37177.2 40326.7 40326.7	22752.7 22752.7 22752.7	0.00000 0.00000 0.00000	0.00000
NO. STREAM	H2S1	CH4 	C2H6	S102 +	F1 +	51 + -	
18 not used 19 not used	0.45063 2.55393	6.3088 35.7550	0.00000	0.73603 4.17142	0.00000	0.00000	
GASEOUS - WEIGHT PERCENT NO. STREAM	N2	02	Н2	CO	CO2	Н20	cos
18 not used 19 not used 22 Oxygen 24 Cold Blast 25 Hot Blast 31 Gas off Final Reductor 32 Gas off Reductor 33 Gas off Prereductor 34 Gas off Postcombustor 35 Furnace gas GASEOUS - WEIGHT PERCENT	48.6894 48.6894 0.0000 76.8000 59.6416 53.4026 53.9217 52.5703	0.000 0.000 100.000 23.200 23.200 5.736 0.000 0.000	16.6714 16.6673 0.0000 0.0000 0.0000 0.0000 0.4458	20.2813 20.2813 0.0000 0.0000 9.2175 27.2349 28.3079	12.8125 12.8125 0.0000 0.0000 25.4048 19.3624 17.3246	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.03036 0.03441 0.00000 0.00000 0.00000 0.00000 0.00000
NO. STREAM	H2S1	CH4	C2H6	S102	F1	S1 +	
18 not used 19 not used	0.09108	1.27517	0.00000	0.14877	0.00000	0.00000	

GASEOUS - VOLUME PERCENT NO. STREAM					CO2		
18 not used 19 not used 22 Oxygen 24 Cold Blast 25 Hot Blast 31 Gas off Final Reductor 32 Gas off Reductor 33 Gas off Prereductor 34 Gas off Postcombustor	15.6470 15.6497 0.0000 79.0852 79.0852 66.2298 57.4438 54.2171 51.7225	0.000 0.000 100.000 20.915 20.915 5.576 0.000 0.000	74.4487 74.4436 0.0000 0.0000 0.0000 0.0000 0.0000 6.2292 8.2431	6.5184 6.5195 0.0000 0.0000 10.2367 29.2989 28.4658 29.4566	2.6209 2.6213 0.0000 0.0000 17.9571 13.2573 11.0879 10.5777	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00455 0.00516 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
35 Furnace gas GASEOUS - VOLUME PERCENT NO. STREAM +	H2S1 +	0.71556	C2H6	\$102 +	0.00000	\$1 	0.00000

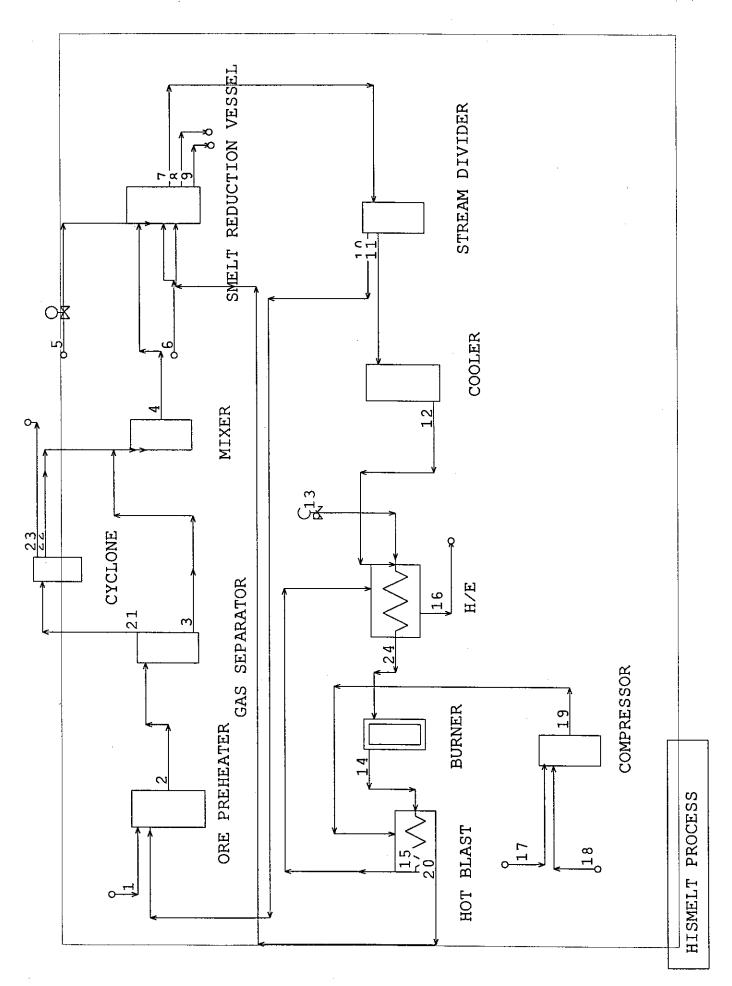
APPENDIX E-4:

HISMELT OXYGEN REACTOR

HISMELT PROCESS

PROCESS BACKGROUND:

The HIsmelt process was initially developed as an air-blown, bottom-injected, refractory-lined process. But due to excessive refractory wear, the initial horizontal design was abandoned and a new Vertical smelt reduction vessel (SRV) was proposed.


PROCESS DESCRIPTION:

In this process, the iron ore is preheated (and optionally prereduced as far as magnetite) in a lean-phase cyclone preheat system similar to that on many cement kilns. It is then injected into the SRV, along with coal and flux materials through two water-cooled solids injection lances such that the mixture is carried predominantly into the metal phase. Rapid dissolution and smelting occur in the metal and the resulting product gases (mainly hydrogen and carbon monoxide) rise under buoyancy to generate the large liquid fountain, a characteristic of HIsmelt. The result is strong mixing within the metal and slag phases with effective elimination of any significant thermal gradients.

Hot offgas from the SRV is enriched with a small quantity of natural gas, the resulting mixture being roughly equivalent to blast furnace gas. This gas is cooled to around 1000C and split into roughly equal proportions. One portion is used (hot) in the preheater, whilst the other is scrubbed and subsequently burned as fuel in the hot blast stoves.

PROCESS ADVANTAGES
Direct smelting

PROCESS - AIR OXYGEN PLANT HOT BLAST 1200C **▼** FLUE **HISMELT PROCESS FLOWSHEET** COLD SRV GAS 35C SLAG COAL & FLUX ORE PREHEATER SMELT REDUCTION VESSEL (SRV) 以次 ORE PINES HOT AIR BLAST (OZ ENRICHED) 1200C NATURAL GAS WATER COOLED PANELS HOT METAL PREHEATED ORE 700C

HIsmelt Process --- MetSim Model --- Description

The MetSim model for this process is largely based upon a typical commercial flowsheet published in a technical article, "HIsmelt – The Future in Direct Ironmaking" by HIsmelt Corporation, Kwinana, Australia.

Flowsheet Description

Stream 1 representing the ore fines feed consists of 82% Fe2O3, 12% Fe3O4 and 6% SiO2. In the Ore Preheater, this feed is heated upto 700C and also partially prereduced (~11% prereduction) by the stream 10 representing a portion of hot gases generated from the Smelt Reduction Vessel. The preheated ore (Stream 2) is passed through a Gas Separator (MetSim unit op) and a Cyclone to capture lost particles (stream 22). The combined prereduced ore (stream 4) is introduced in the Smelt Reduction Vessel along with coal and flux (stream 6).

The oxygen enriched air (30% O2) at 1200C comes into the Reduction vessel as stream 20. Process Air (Stream 17) and Oxygen (Stream 18) are combined and compressed (Stream 19) and then heated to generate stream 20 by using hot gases (stream 14) from the Burner.

Hot gases (Stream 7), Slag (Stream 8) and Hot Metal (Stream 9) are the outgoing streams from the Smelt Reduction Vessel at about 1500C. Hot gases are enriched with Natural Gas (Stream 5) and divided in two parts: one for use in the Ore Preheater, the other for burning as fuel in Burner (hot blast stoves). The latter (stream 11) is first cooled to 35C (stream 12), mixed with combustion air (stream 13) and then preheated by flue gases (Stream 15) before burning. The gases (stream 24) when burned produce sufficient heat to increase the temperature of cold oxygen enriched air (Stream 19) to about 1200C.

Model Assumptions:

Ore Preheater: The temperature of preheated ore fines is 700C. The model requires some external heating.

Gas Separator: 5% solids enter the Cyclone along with hot gases.

Cyclone: 100% efficient, all solid particles are separated from gases and mixed with preheated ore.

Smelt Reduction Vessel: All oxides are grouped together as slag. Hot Metal contains about 5% Carbon. No reaction occurs between Natural gas and hot SRV gases. 10% heat loss.

Stream Divider: 70% of hot SRV gases are burned to heat oxygen enriched air. Rest is used for preheating fine ore.

Cooler: Cold SRV gas temperature is 35C.

H/E: Air is mixed to burn cold SRV gas and preheated by flue gases.

Burner: The reactions reach equilibrium.

Hot Blast: 100% Efficient.

Compressor: No increase in temperature.

Results

It was decided to achieve same operating conditions as were outlined in the article by Hismelt Corporation. In the absence of information on gas compositions and amounts for certain feed streams, a few assumptions were made. These led to some differences between the MetSim Model results and the Commercial flowsheet data by Hismelt Corp. It was observed that Natural gas added to the SRV gas was not sufficient to increase the temperature of oxygen enriched air to 1200C. Hence, instead of 9000Nm3/hr of natural gas, 15000 Nm3/hr of natural gas was needed. Also 70% of the SRV was routed for burners and 30% for preheating instead of equal portions as shown in the Commercial flowsheet. The Ore preheater also required external heating. The natural gas in the SRV gases routed to the Ore Preheater went waste in the absence of any air. More natural gas meant more combustion air to burn than that outlined in the commercial flowsheet.

HISMELT PROCESS --- STREAM SUMMARY

Stream Number	1	2	3	4	5	6	7	8
Stream Names	ORE FINES	HOT ORE FI	PREHEATE	PREHEATE	NATURAL G	COAL FLUX	HOT SRV G	SLAG
KG/HR SOLIDS	2.87E+05	2.78E+05	2.64E+05	2.78E+05	0	1.42E+05	0	0
KG/HR AQUEOUS	0	0	0	0		0	0	0
KG/HR MOLTEN3	0	0	0	0	0	0	0	67737
KG/HR GASEOUS	0	1.67E+05	0	0	10736	0	5.26E+05	0
KG/HR TOTAL	2.87E+05	4.45E+05	2.64E+05	2.78E+05	10736	1.42E+05	5.26E+05	67737
Percent Solids	100	62.471	100	100	0	100	. 0	
Sp.Gr.SOLIDS	4.9432	4.9167	4.9167	4.9167	0	2,4691	0	0
Sp.Gr.AQUEOUS	0	0	0	0	0	0	0	0
Sp.Gr.MOLTEN3	0	0	0	Ö	0	0	0	3.0287
Sp.Gr.GASEOUS	0	0.00038945	0	0	0.00063446	0	0.00021782	0
Sp.Gr.TOTAL	4.9432	0.0010376	4.9167	4.9167	0.00063446	2.4691	0.00021782	3.0287
Temperature C	35	700	700	700	35	35	1504.7	1504.7
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33
Gas nm3/hr	0	1.20E+05	0	0	14999	0	3.71E+05	0
Sol/Liq m3/hr	58.059	56.517	53.691	56.517	0	57.51	0	22,365
Sol/Liq gpm	255.62	248.83	236.39	248.83	0	253.21	0	98.471
Component Mass Flor	w rates			4 ,	<u> </u>		.	
1 C KG/HR	0	0	0	0	0	95140	0	1 0
2 CO KG/HR	0	28719	0	0	0	0	74010	0
3 CO2 KG/HR	0	56622	0	ō	0	0	1.93E+05	0
4 Fe KG/HR	0	0	0	0	0	0	. 0	0
5 FeO KG/HR	0	17068	16214	17068	0	0	. 0	0
6 Fe2O3 KG/HR	2.35E+05	0	0	0	0	0	0	0
7 Fe3O4 KG/HR	34440	2.44E+05	2.31E+05	2.44E+05	0	ō	0	0
9 H2O KG/HR	0	0	0	0	0	-0	0	0
10 H2O KG/HR	0	7233.5	0	0	0	0	Č	0
11 N2 KG/HR	0	74357	0	0	0	0	2.48E+05	0
12 O2 KG/HR	0	0	0	0	0	0		0
15 CaO KG/HR	0	0	0	0	0	32660	0	0
17 SiO2 KG/HR	17220	17220	16359	17220	0	14200	0	0
18 CH4 KG/HR	0	. 0	0	0	10736	0	10736	0
20 CaO KG/HR	0	0	0	0	0	0	0	32660
22 SiO2 KG/HR	0	0	0	0	0	. 0	C	31420
23 FeO KG/HR	0	0	. 0	0	0	C	C	3657.3
Element Mass Flow R	lates							
1 H 1	0	809.44	0	0	2698.1	C	2698.1	0
2 C 6	0	27768	0	0	8037.9	95140	92560	0
3N 7	0	74357	0	0	0	C	2.48E+05	0
40 8	89425	1.44E+05	76284	80299	0	16880	1.83E+05	26865
7 Si 14	8049.3	8049.3	7646.8	8049.3	0	6637.6	C	14687
8 Ca 20	0	0	0	0	0	23342	. C	23342
9 Fe 26	1.90E+05	1.90E+05	1.80E+05	1.90E+05	0	C		2842.9

HISMELT PROCESS --- STREAM SUMMARY

Stream Number	9	10	11	12	13	14:	: 15	16
Stream Names	HOT METAL	HOT GASES	HOT GASES	COLD SRV	COMBUSTI		BURNT SRV	
KG/HR SOLIDS	1.97E+05	0	0	0	0	0	0	0
KG/HR AQUEOUS	0	Ō	0	0	o	14325	14325	14325
KG/HR MOLTEN3	0	0	0	Ö	0	0	. 0	0
KG/HR GASEOUS	0	1.58E+05	3.68E+05	3.68E+05	2.90E+05	6.44E+05	6.44E+05	6.44E+05
KG/HR TOTAL	1.97E+05	1.58E+05	3.68E+05	3.68E+05	2.90E+05	6.58E+05	6.58E+05	6.58E+05
Percent Solids	100	O	0	0	0	0	0	0
Sp.Gr.SOLIDS	6.9301	0	0	Ō	0	0	0	0
Sp.Gr.AQUEOUS	0	0	0	0	Ö	0.31545	0.31545	0.31545
Sp.Gr.MOLTEN3	0	0	0	0	O	0	. 0	0
Sp.Gr.GASEOUS	0	0.00030416	0.00030416	0.0013853	0.0011376	0.00019093	0.00026396	0.00042448
Sp.Gr.TOTAL	6.9301	0.00030416	0.00030416	0.0013853	0.0011376	0.00019518	0.00026983	0.00043391
Temperature C	1504.7	1000	1000	35	35	1786.9	1217	653.48
Pressure kPa	101.33	101.33	101.33	111.69	101.33	101.33	101.33	101.33
Gas nm3/hr	0	1.11E+05	2.60E+05	2.60E+05	2.26E+05	4.47E+05	4.47E+05	4.47E+05
Sol/Liq m3/hr	28.47	0	0	0	O	45.412	45.412	45.412
Sol/Liq gpm	125.35	0	0	0	0	199.94	199.94	199.94
Component Mass Flow	v rates			1	·			
1 C KG/HR	10618	0	0	0	0	. 0	0	0
2 CO KG/HR	0	22203	51807	51807	0	0	0	0
3 CO2 KG/HR	0	58024	1.35E+05	1.35E+05	0	2.37E+05	2.37E+05	2.37E+05
4 Fe KG/HR	1.87E+05	0	0	0	0	0	0	0
5 FeO KG/HR	0	0	0	0	0	Ö	0	0
6 Fe2O3 KG/HR	0	0	0	0	0	0	0	0
7 Fe3O4 KG/HR	0	0	. 0	0	0	0	. 0	0
9 H2O KG/HR	0	0	0	0	0	14325	14325	14325
10 H2O KG/HR	0	Ö	0	0	0	2553.2	2553.2	2553.2
11 N2 KG/HR	0	74357	1.74E+05	1.74E+05	2.29E+05	4.03E+05	4.03E+05	4.03E+05
12 O2 KG/HR	0	0	O	0	60900	1329.3	1329.3	1329.3
15 CaO KG/HR	0	0	Ö	0	0	0	· 0	0
17 SiO2 KG/HR	0	0	0	0	0	0	0	0
18 CH4 KG/HR	0	3220.8	7515.2	7515.2	0	0	0	0
20 CaO KG/HR	0	0	0	0	0	0	0	0
22 SiO2 KG/HR	0		0	0	0	0	0	0
23 FeO KG/HR	0	0	0	0	0	0	0	0
Element Mass Flow R	ates							
1 H 1	0	1	1888.7	1888.7	0	1888.7	1888.7	1888.7
2 C 6	10618	27768	64792	64792	0	64792	64792	64792
3 N 7	0	74357	1.74E+05	1.74E+05	2.29E+05	4.03E+05	4.03E+05	4.03E+05
40 8	0	54870	1.28E+05	1.28E+05	60900	1.89E+05	1.89E+05	1.89E+05
7 Si 14	0	0	0	0	0	0	0	0
8 Ca 20	0	0	0	0	Ö	0	0	0
9 Fe 26	1.87E+05	0	0	0	O	: 0	0	0

HISMELT PROCESS --- STREAM SUMMARY

Stream Number	17	18	19	20	21	22	23	24
Stream Names	PROCESS A	OXYGEN	O2 ENRICH		FINES+GAS		GASES	
KG/HR SOLIDS	0	0	0	0	13894	13894	0	0
KG/HR AQUEOUS	0	0	0	0	0	0	0	-
KG/HR MOLTEN3	0	0	0	0	0	0	0	
KG/HR GASEOUS	3.13E+05	47300	3.60E+05	3.60E+05	1.67E+05	0	1.67E+05	6.58E+05
KG/HR TOTAL	3.13E+05	47300	3.60E+05	3.60E+05	1.81E+05	13894	1.67E+05	6.58E+05
Percent Solids	0	0	0	0	7.6835	100	0	0
Sp.Gr.SOLIDS	0	0	0	0	4.9167	4.9167	0	Ö
Sp.Gr.AQUEOUS	0	0	0	0	0	Ó	0	0
Sp.Gr.MOLTEN3	0	0	0	0	0	Ó	0	-
Sp.Gr.GASEOUS	0.0011376	0.0012637	0.0011527	0.00023838	0.00038945	0	0.00038945	0.00039948
Sp.Gr.TOTAL	0.0011376	0.0012637	0.0011527	0.00023838	0.00042186	4.9167	0.00038945	0.00039948
Temperature C	35	35	35	1217	700	700	700	653.48
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33
Gas nm3/hr	2.44E+05	33179	2.77E+05	2.77E+05	1.20E+05	0	1.20E+05	4.86E+05
Sol/Liq m3/hr	0	0	0	0	2.8258	2.8258	0	0
Sol/Liq gpm	0	0	0	0	12.442	12.442	0	0
Component Mass FI	ow rates		•				<u></u>	
1 C KG/HR	0	0	0	0	0	0	l ol	0
2 CO KG/HR	0	0	Ō	0	28719	0	28719	51807
3 CO2 KG/HR	0	0	0	0	56622	0	56622	1.35E+05
4 Fe KG/HR	0	0	0	0	0	0	0	0
5 FeO KG/HR	0	0	0	Ö	853.38	853.38	0	0
6 Fe2O3 KG/HR	0	0	0	0	0	0	0	0
7 Fe3O4 KG/HR	0	0	0	0	12179	12179	0	0
9 H2O KG/HR	0	0	0	0	0	0	0	0
10 H2O KG/HR	0	0	0	0	7233.5	0	7233.5	0
11 N2 KG/HR	2.47E+05	473	2.48E+05	2.48E+05	74357	0	74357	4.03E+05
12 O2 KG/HR	65761	46827	1.13E+05	1.13E+05	0	0	0	60900
15 CaO KG/HR	0	0	0	0	0	0	0	0
17 SiO2 KG/HR	0	0	0	Ō	861	861	0	0
18 CH4 KG/HR	0	0	Ö	0	0	0	0	7515.2
20 CaO KG/HR	0	0	0	.0	. 0	0	0	0
22 SiO2 KG/HR	0	0	0	. 0	0	0	0	0
23 FeO KG/HR	0	0	0	0	0	0	0	0
Element Mass Flow	Rates							
1 H 1	0			0	809.44	Ó	809.44	1888.7
2 C 6	0	0	0	0	27768	0	27768	64792
3 N 7	2.47E+05	473	2.48E+05	2.48E+05	74357	0	74357	4.03E+05
4O 8	65761	46827	1.13E+05	1.13E+05	68012	4014.9	63997	1.89E+05
7 Si 14	0	0	0	0	402.47	402.47	0	0
8 Ca 20	0	0	0	0	0	0	0	0
9 Fe 26	0	0	0	. 0	9476.3	9476.3	0	0

INPUT DATA

TITLE : HISMELT PROCESS

CASE :

DATA STORAGE FILE NAME : HIsmelt4.sfw

HEAT BALANCE OPTION : ON UNITS OF MASS/TIME : KG/HR

ROW	CNM	CHF		PHC	CMW	SGE	•	•
1			12.0112		0.0000	0.0000		
		O GC8	28.0106		0.0000	0.0000		
		:02 GC8	44.0100		0.0000	0.0000		
4		e SI1	55.8470		0.0000	0.0000		
		eO SI1	71.8464		0.0000	0.0000		
		e203SI1	159.6922		0.000	0.0000		
7		'e304SI1	231.5386		0.0000	0.0000		
		2 GC8	2.0159		0.0000	0.0000		
		120 LI3	18.0153		0.0000	0.0000		
		120 GC8	18.0153		0.0000	0.0000		
11		12 GC8	28.0134		0.0000	0.0000		
		2 GC8	31.9988		0.0000	0.0000		
		5H8 GC8	68.1195		0.0000	0.0000		
		aO SII	101.9612		0.0000	0.0000		
		igO SII	56.0794 40.3114		0.0000	0.0000		
17		igo SII SiO2 SII	60.0848		0.0000	0.0000		•
18		H4 GC8	16.0430		0.0000	0.0000		
		.1203M37	101.9612		0.0000	0.0000		
		a0 M37	56.0794		0.0000	0.0000		
		lg0 M37	40.3114		0.0000	0.0000		
22		190 M37	60.0848		0.0000	0.0000		
		'eO M37	71.8464		0.0000	0.0000		
			, 2.0101	0.7000	0.0000	0.0000		
	CNM	REFERE			reA	HTE-B	HTE-C	
1	С	B672086	0	-299	9 5	.1802	0.2246	4.3597
1 2	C CO	B672086 B672093	0 - 26417	-299 -296	9 5 2 7	.1802 .7460	0.2246 0.2285	4.3597 1.9749
1 2 3	C CO CO2	B672086 B672093 B672094	0 -26417 -94051	-299 -296 - 591	9 5 2 7 1 12	.1802 .7460 .9357	0.2246 0.2285 0.3891	4.3597 1.9749 6.1869
1 2 3 4	C CO CO2 Fe	B672086 B672093 B672094 B672151	0 -26417 -94051 0	-299 -296 -591 -790	9 5 2 7 1 12 3 14	.1802 .7460 .9357 .0914	0.2246 0.2285 0.3891 -1.3293	4.3597 1.9749 6.1869 11.6233
1 2 3 4 5	C CO CO2 Fe FeO	B672086 B672093 B672094 B672151 B672157	0 -26417 -94051 0 -65000	-299 -296 -591 -790 -399	9 5 2 7 1 12 3 14 8 12	.1802 .7460 .9357 .0914 .1207	0.2246 0.2285 0.3891 -1.3293 1.0479	4.3597 1.9749 6.1869 11.6233 0.8685
1 2 3 4 5 6	C CO CO2 Fe FeO Fe2O3	B672086 B672093 B672094 B672151 B672157 B672158	0 -26417 -94051 0 -65000 -197000	-299 -296 -591 -790 -399 -2074	9 5 2 7 1 12 3 14 8 12 9 46	.1802 .7460 .9357 .0914 .1207	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462
1 2 3 4 5 6 7	C CO CO2 Fe FeO Fe2O3 Fe3O4	B672086 B672093 B672094 B672151 B672157 B672158 B672160	0 -26417 -94051 0 -65000 -197000 -267300	-299 -296 -591 -790 -399 -2074	9 5 2 7 1 12 3 14 8 12 9 46 2 71	.1802 .7460 .9357 .0914 .1207 .1517 .0525	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732
1 2 3 4 5 6 7 8	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174	0 -26417 -94051 0 -65000 -197000 -267300	-299 -296 -591 -790 -399 -2074 -3131 -183	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6	.1802 .7460 .9357 .0914 .1207 .1517 .0525	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847
1 2 3 4 5 6 7 8 9	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315	-299 -296 -591 -790 -399 -2074 -3131 -183	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000
1 2 3 4 5 6 7 8 9	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180 B672182	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596
1 2 3 4 5 6 7 8 9 10	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180 B672182 B672244	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794
1 2 3 4 5 6 7 8 9 10 11	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O N2	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180 B672182 B672244 B672277	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 6 7	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697
1 2 3 4 5 6 7 8 9 10 11 12 13	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O N2 O2 C5H8	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180 B672182 B672244 B672277 BAK1132B	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 6 7 9 7	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272
1 2 3 4 5 6 7 8 9 10 11 12 13 14	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O N2	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180 B672182 B672244 B672277	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 9 7 2 34 5 28	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085
1 2 3 4 5 6 7 8 9 10 11 12 13 14	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O N2 O2 C5H8 A12O3 CaO	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180 B672182 B672244 B672277 BAK1132B B672042	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500 -151790	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 9 7 2 34 5 28 5 12	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O C5H8 A12O3	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672180 B672182 B672244 B672277 BAK1132B B672042 B672098	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431 -461	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 9 7 2 34 5 28 5 12	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653 .0730	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606 0.3610	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088 3.1765
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O C5H8 A12O3 CaO MgO	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672182 B672244 B672277 BAK1132B B672042 B672042 B672098 B672227	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500 -151790 -143760 -217720	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 9 7 2 34 5 28 5 12 2 11	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653 .0730 .8081	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606 0.3610 -0.5456	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088 3.1765 8.8977
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O N2 C5H8 A12O3 CaO MgO SiO2	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672182 B672244 B672277 BAK1132B B672042 B672042 B672098 B672227 B672387	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500 -151790 -143760 -217720	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431 -461 -865 -642	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 9 7 2 34 5 28 5 12 2 11 4 19	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653 .0730 .8081 .1651 .8424	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606 0.3610 -0.5456 2.9907	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088 3.1765 8.8977 8.0422
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O O2 C5H8 A12O3 CaO MgO SiO2 CH4 A12O3 CaO	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672182 B672244 B672277 BAK1132B B672042 B672042 B672098 B672227 B672387 B6772217	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500 -151790 -143760 -217720 -17880 -400500	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431 -461 -865	9 5 2 7 1 12 3 14 8 12 9 46 2 71 7 6 1 16 3 7 9 7 2 34 5 28 5 12 2 11 4 19 4 11	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653 .0730 .8081 .1651 .8424	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606 0.3610 -0.5456 2.9907 0.0000	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088 3.1765 8.8977 8.0422 0.0000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O S2 C5H8 A12O3 CaO MgO SiO2 CH4 A12O3	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672182 B672244 B672277 BAK1132B B672042 B672042 B672027 B672027 B6720217 B6772012	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500 -151790 -143760 -217720 -17880	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431 -461 -865 -642 -1949 -431	9 5 2 7 1 12 3 14 8 12 9 46 2 71 6 7 6 7 9 34 2 28 5 12 2 11 4 19 4 11 2 46 5 12	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653 .0730 .8081 .1651 .8424	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606 0.3610 -0.5456 2.9907 0.0000 0.4606	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088 3.1765 8.8977 8.0422 0.0000 2.0088
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O O2 C5H8 A12O3 CaO MgO SiO2 CH4 A12O3 CaO	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672182 B672244 B672277 BAK1132B B672042 B672098 B672227 B6720217 B6772217 B672042 B672098	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500 -151790 -143760 -217720 -17880 -400500 -151790	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431 -461 -865 -642 -1949	9 5 2 7 1 12 3 14 8 12 9 46 2 71 6 7 7 6 1 16 3 7 9 34 5 28 12 2 11 4 19 4 11 2 46 5 12	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653 .0730 .8081 .1651 .8424 .0000 .0730 .8081	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606 0.3610 -0.5456 2.9907 0.0000 0.4606 0.3610	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088 3.1765 8.8977 8.0422 0.0000 2.0088 3.1765
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	C CO CO2 Fe FeO Fe2O3 Fe3O4 H2 H2O H2O C5H8 A12O3 CaO MgO SiO2 CH4 A12O3 CaO MgO	B672086 B672093 B672094 B672151 B672157 B672158 B672160 B672174 B672182 B672244 B672277 BAK1132B B672042 B672098 B672227 B6720217 B672042 B672042 B672042 B672042 B672042	0 -26417 -94051 0 -65000 -197000 -267300 0 -68315 -57795 0 0 -34800 -400500 -151790 -143760 -217720 -17880 -400500 -151790 -143760	-299 -296 -591 -790 -399 -2074 -3131 -183 -507 -240 -284 -297 -1718 -1242 -431 -461 -865 -642 -1949 -431 -461	9 5 2 7 1 12 3 14 8 12 9 46 2 71 6 7 6 7 9 34 5 12 2 2 11 4 19 4 12 4 12 2 42 2 2 2 2	.1802 .7460 .9357 .0914 .1207 .1517 .0525 .3659 .1848 .2906 .5728 .9696 .9823 .9653 .0730 .8081 .1651 .8424	0.2246 0.2285 0.3891 -1.3293 1.0479 -3.8751 -7.8736 0.4428 2.7637 1.3003 0.2525 0.2720 9.5671 1.0071 0.4606 0.3610 -0.5456 2.9907 0.0000 0.4606	4.3597 1.9749 6.1869 11.6233 0.8685 21.9462 32.0732 -0.2847 0.0000 0.3596 1.7794 1.7697 17.7272 11.1085 2.0088 3.1765 8.8977 8.0422 0.0000 2.0088

INPUT DATA

			HEA	T BALAN	NCE SUMN	MARY - I	1000 KC	AL/HOUR	
		INPUT	HEAT	HEAT	ENERGY	HEAT	HEAT	OUTPUT	
OP	PROCESS STEP	STREAM	REACT	SOLUT	INPUT	LOSS	REQRD	STREAM	TOTAL
	+	+	++		+ - 4	+ 		+ +	
1	HISMELT PROCESS	0	0	0	0	0	0	0	0
2	ORE PREHEATER	44004	-10666	0	0	0	37698	-71036	0
3	GAS SEPARATOR	71036	0	0	0	0	0	-71036	0
4	CYCLONE	32549	0	0	0	0	0	-32549	0
5	MIXER	40512	0	0	0	0	0	-40512	. 0
6	SMELT REDUCTION	155456	189782	0	0	-34524	0-	-310714	0
7	STREAM DIVIDER	231087	. 0	0	0	0	-85725-	-145362	0
8	COOLER	101753	0	0	0	0-	-100619	-1134	. 0
9	H/E	220900	0	0	0	0	0-	-220900	0
10	BURNER	109076	223286	0	0	0	0-	-332362	. 0
11	HOT BLAST	333416	0	0	0	0	0-	-333416	Ō
12	COMPRESSOR	1054	Ω	Λ	n	Ď	Ō	-1054	0

STI	REAM	TEMP	ERAT	URES	AND	ENTHALPIES
かたがひ ニケ	THENET	יז ו		アクカエ	/11th	DIDET / FIT

STREAM	TEMP-C	TEMP-F	KCAL/HR	BTU/HR	KJ/HR
OKE FINES	33.00	95.00	395334.00	1268813.0	1654079.0
HOT ORE FINES+GASES	700.00	1292.00	71035713.00	281892490.0	
PREHEATED COARSE ORE	700.00	1292.00	38486540.00	152726934.0	161027684.0
PREHEATED ORE	700.00	1292.00	40512147.00	160765193.0	169502825.0
NATURAL GAS	35.00	95.00	79954.00	317282.0	334526.0
COAL FLUX	35.00	95.00	343801.00	1364311.0	
HOT SRV GAS	1504.68	2740.42	231087283.00	917028450.0	966869193.0
SLAG	1504.68	2740.42	27827718.00	110429308.0	116431171.0
HOI MEIAL	1304.08	2740.42	21/989/2.00	205554945.0	216726912.0
HOT GASES FOR PREHEATER	1000.00	1832.00	43608595.00	173052891.0	182458362.0
					425736178.0
COLD SRV GAS	35.00	95.00	1134438.00	4501815.0	4746489.0
COMBUSTION AIR	35.00	95.00	870306.00	3453654.0	3641361.0
	1786.91	3248.44	332361759.00	1318918047.0	1390601598.0
BURNT SRV GAS	1216.97	2222.54	218895751.00	868648541.0	915859824.0
FLUE	653.48	1208.26	111824590.00	443755837.0	467874086.0
PROCESS AIR	35.00	95.00	939768.00	3729300.0	3931989.0
OXYGEN	35.00	95.00	114372.00	453864.0	478531.0
OZ ENRICHED PROCESS AIR	35.00	95.00	1054140.00	4183164.0	4410520.0
HOT AIR BLAST	1216.97	2222.54	114520147.00	454452670.0	
FINES+GAS	700.00	1292.00	32549173.00	129165557.0	
PREHEATED FINES	700.00	1292.00	2025607.00	8038260.0	8475141.0
GASES	700.00	1292.00	30523566.00	121127297.0	127710598.0
	653.48	1208.26	109075905.00	432848171.0	456373586.0
	HOT ORE FINES+GASES PREHEATED COARSE ORE PREHEATED ORE NATURAL GAS COAL FLUX HOT SRV GAS SLAG HOT METAL HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS COMBUSTION AIR BURNT SRV GAS FLUE PROCESS AIR OXYGEN O2 ENRICHED PROCESS AIR HOT AIR BLAST FINES+GAS PREHEATED FINES GASES	HOT ORE FINES+GASES 700.00 PREHEATED COARSE ORE 700.00 PREHEATED ORE 700.00 NATURAL GAS 35.00 COAL FLUX 35.00 HOT SRV GAS 1504.68 HOT METAL 1504.68 HOT METAL 1504.68 HOT GASES FOR PREHEATER 1000.00 HOT GASES TO COOLER 1000.00 COLD SRV GAS 35.00 COMBUSTION AIR 35.00 COMBUSTION AIR 35.00 DYREDE 653.48 PROCESS AIR 35.00 OXYGEN 35.00 OXYGEN 35.00 OZ ENRICHED PROCESS AIR 35.00 HOT AIR BLAST 1216.97 FINES+GAS 700.00 PREHEATED FINES 700.00 GASES 700.00	HOT ORE FINES+GASES 700.00 1292.00 PREHEATED COARSE ORE 700.00 1292.00 NATURAL GAS 35.00 95.00 COAL FLUX 35.00 95.00 HOT SRV GAS 1504.68 2740.42 HOT METAL 1504.68 2740.42 HOT GASES FOR PREHEATER 1000.00 1832.00 HOT GASES TO COOLER 1000.00 1832.00 COMBUSTION AIR 35.00 95.00 COMBUSTION AIR 35.00 95.00 1786.91 3248.44 BURNT SRV GAS 1216.97 2222.54 FLUE 653.48 1208.26 PROCESS AIR 35.00 95.00 OXYGEN 35.00 95.00 PREHEATED FINES AIR 35.00 95.00 PREHEATED FINES 700.00 1292.00 GASES 700.00 1292.00 GASES	ORE FINES 35.00 395.00 395334.00 HOT ORE FINES+GASES 700.00 1292.00 71035713.00 PREHEATED COARSE ORE 700.00 1292.00 38486540.00 PREHEATED ORE 700.00 1292.00 40512147.00 NATURAL GAS 35.00 95.00 79954.00 COAL FLUX 35.00 95.00 343801.00 HOT SRV GAS 1504.68 2740.42 231087283.00 SLAG 1504.68 2740.42 27827718.00 HOT METAL 1504.68 2740.42 27827718.00 HOT GASES FOR PREHEATER 1000.00 1832.00 43608595.00 HOT GASES TO COOLER 1000.00 1832.00 101753389.00 COMBUSTION AIR 35.00 95.00 870306.00 BURNT SRV GAS 1216.97 2222.54 218895751.00 FLUE 653.48 1208.26 111824590.00 PROCESS AIR 35.00 95.00 114372.00 OXYGEN 35.00 95.00 1054140.00 HOT AIR BLAST 1216.97 2222.54 114520147.00 FINES	ORE FINES 35.00 95.00 395334.00 1568813.0 HOT ORE FINES+GASES 700.00 1292.00 71035713.00 281892490.0 PREHEATED COARSE ORE 700.00 1292.00 38486540.00 152726934.0 PREHEATED ORE 700.00 1292.00 40512147.00 160765193.0 NATURAL GAS 35.00 95.00 79954.00 317282.0 COAL FLUX 35.00 95.00 343801.00 1364311.0 HOT SRV GAS 1504.68 2740.42 231087283.00 917028450.0 SLAG 1504.68 2740.42 231087283.00 917028450.0 HOT METAL 1504.68 2740.42 51798975.00 205554945.0 HOT GASES FOR PREHEATER 1000.00 1832.00 43608595.00 173052891.0 HOT GASES TO COOLER 1000.00 1832.00 43608595.00 173052891.0 COLD SRV GAS 35.00 95.00 1134438.00 4501815.0 COMBUSTION AIR 35.00 95.00 870306.00 3453654.0 1786.91 3248.44 332361759.00 1318918047.0 BURNT SRV GAS 1216.97 2222.54 218895751.00 868648541.0 FLUE 653.48 1208.26 111824590.00 443755837.0 PROCESS AIR 35.00 95.00 939768.00 3729300.0 OXYGEN 35.00 95.00 113472.00 453864.0 OXYGEN 35.00 95.00 114372.00 453864.0 HOT AIR BLAST 1216.97 2222.54 14520147.00 454452670.0 FINES+GAS 700.00 1292.00 32549173.00 129165557.0 PREHEATED FINES 700.00 1292.00 30523566.00 121127297.0

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

	VOLUME	TRIC FLOW	RATE OF	STREAMS V	WITH GASES	3
NO.	STREAM ++	TIME	ACFM	SCFM	M3/HR	NM3/HR
2 5	HOT ORE FINES+GASES NATURAL GAS HOT SRV GAS HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS COMBUSTION AIR BURNT SRV GAS FLUE PROCESS AIR OXYGEN OZ ENRICHED PROCESS AIR HOT AIR BLAST FINES+GAS GASES	100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000	252319 9960 1421399 305370 712530 156448 150040 1984885 1435747 892829 162015 22031 184046 889985 252287 252286 969775	70846.4 8828.3 218387.1 65516.1 152871.0 132998.0 263187.4 263187.4 143613.0 19528.5 163141.4 163141.4 70813.1 285869.0	428692 16921 2414973 518827 1210597 265806 254919 3372342 2439350 1516926 275265 37430 312695 1512095 428639 428636 1647658	120368.8 14999.5 371042.1 111312.6 259729.4 259729.4 225965.1 447158.3 447158.3 244000.0 33179.1 277179.1 277179.1 120315.1 120312.3 485694.5
NΟ	VOLUMETRIC FLOW					
NO.	STREAM +	TIME:	USGPM	LPS +	M3/HR +	M3/DY
3 4 6 8 9 22	PREHEATED COARSE ORE PREHEATED ORE COAL FLUX SLAG HOT METAL PREHEATED FINES	100.0000 100.0000 100.0000 100.0000 100.0000	236.3926 248.8343 253.2074 98.4709 125.3485 12.4417	14.91414 15.69910 15.97500 6.21259 7.90831 0.78495	53.69092 56.51675 57.51000 22.36531 28.46991 2.82584	1288.582 1356.402 1380.240 536.767 683.278 67.820
NO.	STREAM	KG/HR-SI	KG/HR-LI	KG/HR-M3	KG/HR-GC	KG/HR-TC
10 11 12 13 14 15 16 17 18 19 20 21	BURNT SRV GAS FLUE PROCESS AIR OXYGEN O2 ENRICHED PROCESS AIR HOT AIR BLAST FINES+GAS PREHEATED FINES GASES	197300.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 14325.03 14325.03 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0	197300.1 197300.1 157805.4 368212.5 290000.0 658212.5 658212.5 658212.5 313145.7 47300.0 360445.7 180825.5 13893.7 166931.8

SPECIFIC GRAVITIES

NO.	STREAM	PCS	SG-SI	SG-LI	SG-M3	SG-GC	SG-TC
1	ORE FINES	100.0000	4.9432	0.0000	0.0000	0.0000	4.9432
2	HOT ORE FINES+GASES	62.4708	4.9167	0.0000	0.0000	0.0004	0.0010
3	PREHEATED COARSE ORE	100.0000	4.9167	0.0000	0.0000	0.0000	4.9167
4	PREHEATED ORE	100.0000	4.9167	0.0000	0.0000	0.0000	4.9167
5	NATURAL GAS	0.0000	0.0000	0.0000	0.0000	0.0006	0.0006
6	COAL FLUX	100.0000	2.4691	0.0000	0.0000	0.0000	2.4691
7	HOT SRV GAS	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
8	SLAG	0.0000	0.0000	0.0000	3.0287	0.0000	3.0287
9	HOT METAL	100.0000	6.9301	0.0000	0.0000	0.0000	6.9301
10	HOT GASES FOR PREHEATER	0.0000	0.0000	0.0000	0.0000	0.0003	0.0003
11	HOT GASES TO COOLER	0.0000	0.0000	0.0000	0.0000	0.0003	0.0003
12	COLD SRV GAS	0.0000	0.0000	0.0000	0.0000	0.0014	0.0014
13	COMBUSTION AIR	0.0000	0.0000	0.0000	0.0000	0.0011	0.0011
14		0.0000	0.0000	0.3154	0.0000	0.0002	0.0002
15	BURNT SRV GAS	0.0000	0.0000	0.3154	0.0000	0.0003	0.0003
16	FLUE	0.0000	0.0000	0.3154	0.0000	0.0004	0.0004
17	PROCESS AIR	0.0000	0.0000	0.0000	0.0000	0.0011	0.0011
18	OXYGEN	0.0000	0.0000	0.0000	0.0000	0.0013	0.0013
19	02 ENRICHED PROCESS AIR	0.0000	0.0000	0.0000	0.0000	0.0012	0.0012
20	HOT AIR BLAST	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
21	FINES+GAS	7.6835	4.9167	0.0000	0.0000	0.0004	0.0004
22	PREHEATED FINES	100.0000	4.9167	0.0000	0.0000	0.0000	4.9167
	GASES	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004
24		0.0000	0.0000	0.0000	0.0000	0.0004	0.0004

SOLI	DS - KG/HR STREAM	C	Fe	FeO	Fe203	Fe304	Al203	CaO
1 2 3 4 6 9 21 22	DS - KG/HR STREAM ORE FINES HOT ORE FINES+GASES PREHEATED COARSE ORE PREHEATED ORE COAL FLUX HOT METAL FINES+GAS PREHEATED FINES	0.0 0.0 0.0 0.0 95140.0 10617.7 0.0	0 0 0 0 0 186682 0	0.0 17067.5 16214.1 17067.5 0.0 0.0 853.4 853.4	235340 0 0 0 0 0 0	34440 243586 231407 243586 0 0 12179 12179	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.0 0.0 0.0 0.0 32660.0 0.0 0.0
1 2 3 4 6 21 22	DS - KG/HR STREAM ORE FINES HOT ORE FINES+GASES PREHEATED COARSE ORE PREHEATED ORE COAL FLUX FINES+GAS PREHEATED FINES	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	17220.0 17220.0 16359.0 17220.0 14200.0 861.0					
SOLI	DS - WEIGHT PERCENT STREAM	С	Fe	FeO	Fe203	Fe304	A1203	Ca0
1 2 3 4 6 9 21 22	ORE FINES HOT ORE FINES+GASES PREHEATED COARSE ORE PREHEATED ORE COAL FLUX HOT METAL FINES+GAS PREHEATED FINES	0.0000 0.0000 0.0000 0.0000 67.0000 5.3815 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 94.6185 0.0000	0.00000 6.14219 6.14219 6.14219 0.00000 0.00000 6.14219 6.14219	82.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	12.0000 87.6607 87.6607 87.6607 0.0000 0.0000 87.6607 87.6607	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.0000 0.0000 0.0000 0.0000 23.0000 0.0000 0.0000
SOLI	DS - WEIGHT PERCENT STREAM	MgO	SiO2					
1 2 3 4 6 21 22	ORE FINES HOT ORE FINES+GASES PREHEATED COARSE ORE PREHEATED ORE COAL FLUX FINES+GAS PREHEATED FINES	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	6.0000 6.1971 6.1971 6.1971 10.0000 6.1971 6.1971					
AQUI NO.	EOUS - KG/HR STREAM	Н2О						
14 15		14325.0 14325.0 14325.0						
NO.	EOUS - WEIGHT PERCENT STREAM	H2O						
14 15		100.000 100.000 100.000						
NO.	EOUS - GRAMS PER LITER STREAM	H20						
14 15	'	315.448 315.448 315.448						

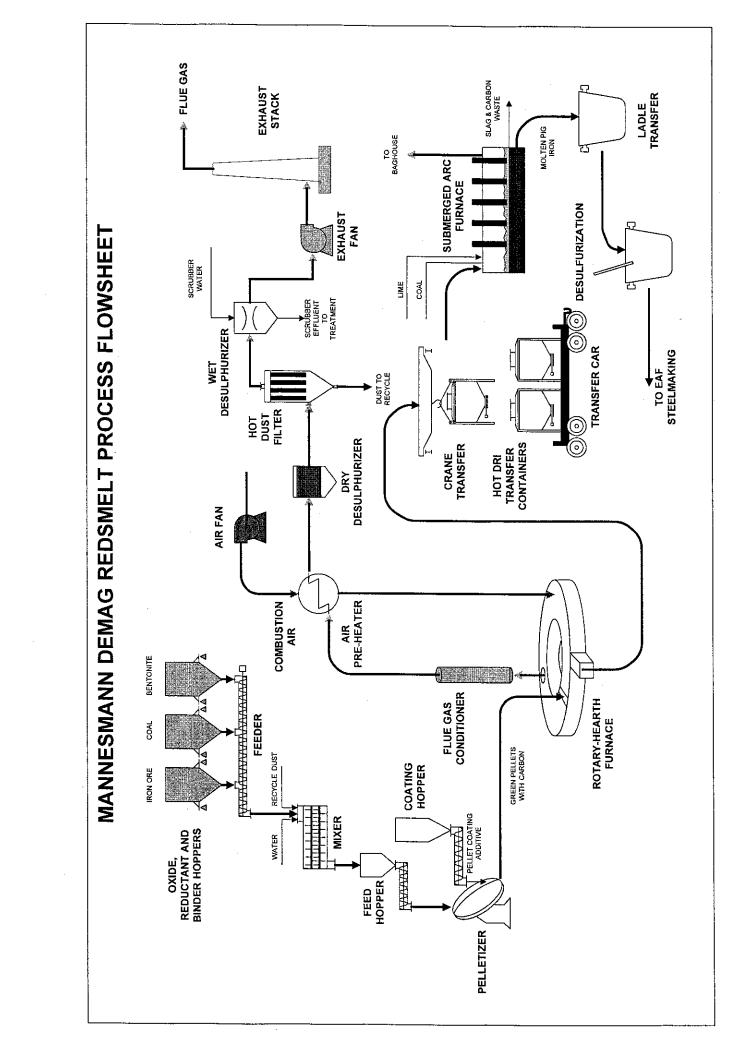
MOL:	TEN3 - KG/HR STREAM	A1203	CaO	MgO	SiO2	FeO		
8	STREAM 	0.00000	32660.0	0.00000	31420.0	3657.33		
	TEN3 - WEIGHT PERCENT STREAM 							
8	SLAG	0.00000	48.2157	0.00000	46.3851	5.39928		
NO.	EOUS - KG/HR STREAM +	CO	CO2	H2	H20	N2	02	C5H8
2 7 10 11 12 13 14 15 16 17 18 19 20 21 23 24	HOT ORE FINES+GASES HOT SRV GAS HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS COMBUSTION AIR BURNT SRV GAS FLUE PROCESS AIR OXYGEN OZ ENRICHED PROCESS AIR HOT AIR BLAST FINES+GAS GASES	28718.7 74009.7 22202.9 51806.8 51806.8 0.0 0.0 0.0 0.0 0.0 28718.7 28718.7 51806.8	56622 193414 58024 135390 135390 0 237404 237404 237404 0 0 0 56622 56622 135390	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	7233.52 0.00 0.00 0.00 0.00 0.00 2553.18 2553.18 0.00 0.00 0.00 7233.52 7233.52 0.00	74357 247858 74357 173501 173501 229100 402601 402601 247385 473 247858 247858 74357 74357 402601	0 0 0 0 0 60900 1329 1329 1329 65761 46827 112588 112588	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
CD C.	EOUS - KC/HR							
10	STREAM + NATURAL GAS HOT SRV GAS HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS	3220 8						
GAS NO.	EOUS - WEIGHT PERCENT STREAM +	CO	CO2	H2	H2O	N2	02	C5H8
2 7 10 11 12 13 14 15 16 17 18 19 20	HOT ORE FINES+GASES HOT SRV GAS HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS COMBUSTION AIR BURNT SRV GAS FLUE PROCESS AIR OXYGEN OZ ENRICHED PROCESS AIR HOT AIR BLAST FINES+GAS GASES	17.2038 14.0698 14.0698 14.0698 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17.2038 17.2038	33.9193 36.7695 36.7695 36.7695 0.0000 36.8705 36.8705 0.0000 0.0000 0.0000 33.9193 33.9193	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	4.33322 0.00000 0.00000 0.00000 0.00000 0.39653 0.39653 0.00000 0.00000 0.00000 4.33322 4.33322	44.5436 47.1197 47.1197 47.1197 79.0000 62.5266 62.5266 62.5266 79.0000 1.0000	0.0000 0.0000 0.0000 0.0000 21.0000 0.2065 0.2065 21.0000 99.0000 31.2357 31.2357 0.0000 0.0000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

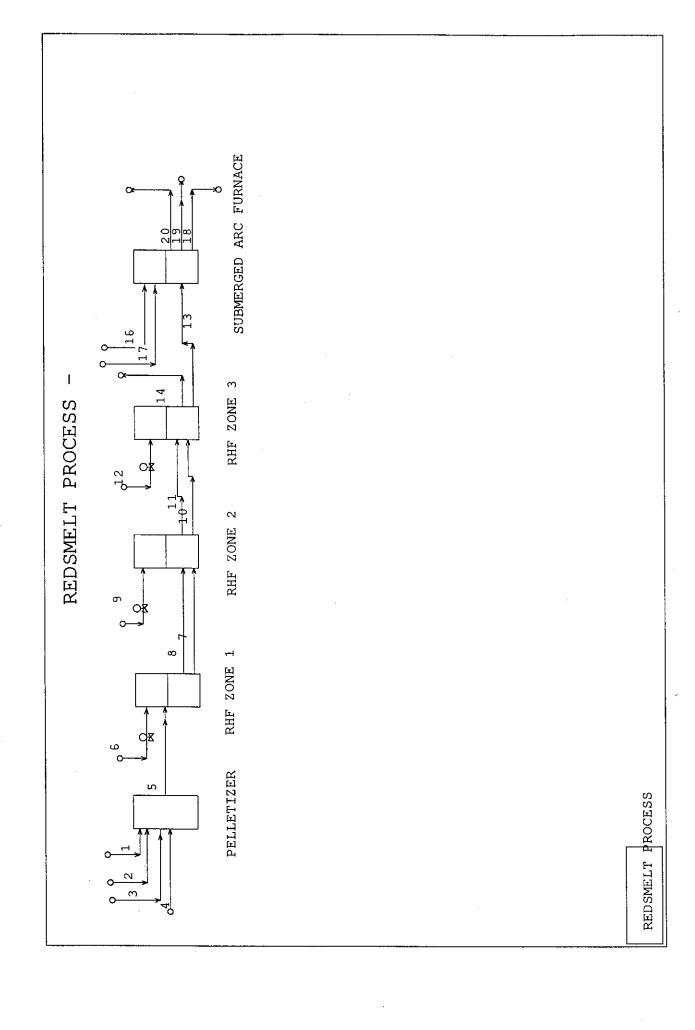
NO.	COUS - WEIGHT PERCENT STREAM	CH4						
5 7 10	NATURAL GAS HOT SRV GAS HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS	100.000 2.041 2.041						
NO.	EOUS - VOLUME PERCENT STREAM	CO	CO2	H2	H2O	N2	. 02	С5н8
2 7 10 11 12 13 14 15 16 17 18	HOT ORE FINES+GASES HOT SRV GAS HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS COMBUSTION AIR BURNT SRV GAS FLUE PROCESS AIR OXYGEN O2 ENRICHED PROCESS AIR HOT AIR BLAST FINES+GAS GASES	19.1008 15.9611 15.9611 15.9611 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	23.9687 26.5481 26.5481 26.5481 0.0000 27.0402 27.0402 27.0402 0.0000 0.0000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	7.48026 0.00000 0.00000 0.00000 0.00000 0.71041 0.71041 0.00000 0.00000	49.4502 53.4483 53.4483 53.4483 81.1218 72.0412 72.0412 72.0412 81.1218 1.1406 71 5478	0.0000 0.0000 0.0000 0.0000 18.8782 0.2082 0.2082 18.8782 98.8594	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NO.	EOUS - VOLUME PERCENT STREAM +	CH4						
5 7 10	NATURAL GAS HOT SRV GAS HOT GASES FOR PREHEATER HOT GASES TO COOLER COLD SRV GAS	100.000 4.043 4.043						

·		

APPENDIX E-5: REDSMELT ROTARY HEARTH FURNACE

PROCESS BACKGROUND:


The Redsmelt process is based upon a rotary hearth furnace which reduces green pellets made out of iron ore, reductant fines and binders to produce hot, metallized DRI that is charged to a Submerged Arc Furnace. The process operates at high temperature and atmospheric pressure.


PROCESS DESCRIPTION:

The iron oxide feed to a Redsmelt furnace is in the form of green pellets made of fine iron ore, reductant and binders. Binders are to give to the green pellets sufficient mechanical strength to support the handling shocks downstream. Pellets are screened on a roller-type screen to a size between 8 to 16 mm. Under and oversize materials are recirculated to feed the pelletizing disks. Pellets are then distributed onto the RHF in a layer up to 30 kg/m2. While travelling throughout the furnace in 12 to 18 minutes, pellets are heated up to 1370C. Drying of the pellets, coal devotalitization and iron oxide reduction takes place during the heating process. The intimate contact between iron oxide and carbon at a very high temperature results in a very fast reaction rate. To prevent reoxidation of metallized iron the final zones of the furnace are operated in substoichiometric atmosphere. The hot DRI product is then fed to the submerged arc furnace (SAF) for smelting into Hot metal and slag.

PROCESS ADVANTAGES

Iron ore fines as raw material Wide variety of solid reductants Less reduction time (12 to 18 minutes) Proven equipment usage

Redsmelt Process --- MetSim Model --- Description

The MetSim model for this process is largely based upon a basic flowsheet developed by Mannesmann Demag.

Flowsheet Description

Iron ore fines (Stream 1), coal (Stream 2) and an organic or inorganic binder (Stream 3) are mixed with water and pelletized on a disc to green pellets. Then the pellets pass through three furnace zones: Heating (RHF Zone 1), Main Reduction (RHF Zone 2) and Final Reduction (RHF Zone 3). The temperature in the three zones is adjusted with the burners and the air to match the process requirement. In Zone 1, the pellets are heated so that all moisture is released, the coal is volatilized and some reduction takes place. This generates streams 7 (solids) and 8 (gases). In Zone 2, main reduction takes place. Then the solids (stream 10) and gases (Stream 11) enter in third zone where final reduction takes place. This leads to the formation of DRI (Stream 13) and the gases (Stream 14) go to the exhaust after some treatment to control hazardous emissions. DRI is then conveyed to a Submerged Arc Furnace where some coal(Stream 16) and lime (stream 17) are added. This leads to separation of slag (Stream 19) from hot metal (Stream 18). Gases from the SAF (Stream 20) have lots of calorific value and can be used elsewhere.

Model Assumptions:

RHF Zone 1: Partial reduction of iron ore to Fe3O4 takes place in this zone.

RHF Zone 2: Reduction of Fe3O4 to FeO takes place in this zone.

RHF Zone 3: Reduction of FeO to Fe takes place in this zone.

Submerged Arc Furnace: Separation of Slag from Hot metal occurs here.

Results

With the information available about the rotary hearth furnace, several estimates have been made in the model. A more complete analysis can be carried out on receiving more information about the process flows and conditions.

REDSMELT PROCESS --- STREAM SUMMARY

Stream Number	1	2	3	4	5	6	7	8
Description	Iron Ore	Coal	Binder	Water	Green Pellet	Combustion	Pellets from	Gases from Z
KG/HR SOLIDS	1446	490.2	16	0	1952.2	0	1739.3	0
KG/HR AQUEOUS	0	25.8	0	100	125.8	0	0	0
KG/HR MOLTEN3	Ö	0	0	0	0	0	0	0
KG/HR GASEOUS	0	0	0	0	0	1261.5	0	1600.1
KG/HR TOTAL	1446	516	16	100	2078	1261.5	1739:3	1600.1
Percent Solids	100	95	100	0	93.946	0	100	0
Sp.Gr.SOLIDS	5.1103	1.6075	3.31	0	3.2935	ō	4.1027	0
Sp.Gr.AQUEOUS	0	0.99712	0	0.99712	0.99712	0		0
Sp.Gr.MOLTEN3	0	0	0	0	0	0	0	0
Sp.Gr.GASEOUS	0	0	0	0	0	0.0006132	0	0.00019492
Sp.Gr.TOTAL	5.1103	1.5598	3.31	0.99712	2.8905	0.0006132	4,1027	0.00019492
Temperature C	25	25	25	25	25	300	1400	1400
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33
Gas nm3/hr	0	0	0	0	0	980.41	0	1340.2
Sol/Liq m3/hr	0.28296	0.33082	0.0048338	0.10029	0.7189	0	0.42395	0
Component Mass Flow	Rates			J	• • • • • • • • • • • • • • • • • • • 		A	•
1 CaO KG/HR	14.46	0	16	0	30.46	0	30.46	0
2 CaO KG/HR	0	0	0	0	0	0	0	0
3 CO KG/HR	0	0	0	0	0	0	0	280.82
4 CO2 KG/HR	0	0	0	0	0	. 0	0	128.85
5 C KG/HR	O	372.55	0	0	372.55	. 0	294.76	0
6 Fe KG/HR	0	0	0	0	0	0	0	0
7 FeO KG/HR	0	0	0	0	0	0	0	0
8 Fe2O3 KG/HR	1402.6	0	O	0	1402.6	0	0	0
9 Fe3O4 KG/HR	0	0	0	0	0	0	1355.8	0
10 H2O KG/HR	. 0	25.8	0	100	125.8	0	0	0
11 H2O KG/HR	0	0	0	0	0	0	0	219.14
12 N2 KG/HR	0	0	0	0	0	971.33	0	971.33
13 O2 KG/HR	0	0	C	0	0	290.14	0	0
14 SiO2 KG/HR	28.92	29.412	C	0	58.332	0	58.332	O
15 SiO2 KG/HR	0	C	С	0	0	0	0	0
16 C5H8 KG/HR	0	88.236	C	0	88.236	0	0	0
17 C5H8 KG/HR	0	C	C	0	0	0	0	0
Element Mass Flow Ra	ates				•		•	•
1 H 1	C	13.332	c	11.19	24.522	0	0	24.522
2 C 6	, c	450.34	C	0	450.34	0	294.76	155.58
3N 7 .	C) (C	0	. 0	971.33	0	971.33
40 8	441.11	38.577	4.5648	88.81	573.06	290.14	414.49	448.7
5 Si 14	13.518	13.748	C	0	27.267	0	27.267	0
6 Ca 20	10.335	5 0	11.435	0	21.77	0	21.77	0
7 Fe 26	981.04			0	981.04	0	981.04	0

REDSMELT PROCESS --- STREAM SUMMARY

Stream Number	9	10	11	12	13	14	16	17
Description	Combustion	Pellets from	Gases from	Combustion	DRI	Gases from	Coal	Lime
KG/HR SOLIDS	0	1610.5	0	0	1153.6	0	40	60
KG/HR AQUEOUS	0	0	0	0	0	0	0	
KG/HR MOLTEN3	0	0	0	0	0	0	0	0
KG/HR GASEOUS	0.001	0	1729	0.86988	0	2186.7	0	0
KG/HR TOTAL	0.001	1610.5	1729	0.86988	1153.6	2186.7	40	60
Percent Solids	Ö	100	0	0	100	0	100	100
Sp.Gr.SOLIDS	0	4.3762	0	0	6.103	0	1.6075	3.31
Sp.Gr.AQUEOUS	0	0	0	0	0	0	0	******
Sp.Gr.MOLTEN3	0	0	0	0	0	0	0	0
Sp.Gr.GASEOUS	0.0006132	0	0.00020078	0.0006132	0	0.00019687	0	0
Sp.Gr.TOTAL	0.0006132	4.3762	0.00020078	0.0006132	6.103	0.00019687	1.6075	3.31
Temperature C	300	1400	1400	300	1100	1400	25	25
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33
Gas nm3/hr	0.0007772	0	1405.8	0.67607	0	1813.2	0	0
Sol/Liq m3/hr	0	0.36801	0	0	0.18903	0	0.024883	0.018127
Component Mass Flow	Rates							•
1 CaO KG/HR	0	30.46	0	0	30.46	0	0	60
2 CaO KG/HR	0	0	0	0	0	0	O	0
3 CO KG/HR	0	Ö	280.82	0	0	879.15	0	0
4 CO2 KG/HR	0	0	257.7	0	0	116.22	0	0
5 C KG/HR	0	259.6	0	0	41.638	0	30.4	0
6 Fe KG/HR	0	0	0	0	833.88	0	0	0
7 FeO KG/HR	0	1262.1	0	0	189.31	0	0	0
8 Fe2O3 KG/HR	0	0	0	0	0	0	0	0
9 Fe3O4 KG/HR	0	0	0	0	0	0	0	0
10 H2O KG/HR	0	0	0	0	0	0	0	0
11 H2O KG/HR	0	0	219.14	0	0	219.14	0	0
12 N2 KG/HR	0.00077	0	971.34	0.66981	0	972.01	0	0
13 O2 KG/HR	0.00023	0	0.00023	0.20007	0	0.2003	0	0
14 SiO2 KG/HR	0	58.332	0	0	58.332	0	2.4	0
15 SiO2 KG/HR	0	0	0	0	0	0	0	0
16 C5H8 KG/HR	0	0	0	0	0	0	7.2	0
17 C5H8 KG/HR	0	0	0	0	0	0	0	0
Element Mass Flow Ra	ates							
1 H 1	0	0	24.522	0	0	24.522	0.85231	0
2 C 6	0	259.6	190.75	0	41.638	408.7	36.748	0
3N 7	0.00077	0	971.34	0.66981	0	972.01	0	0
40 8	0.00023	320.81	542.39	0.20007	81.914	781.49	1.2781	17.118
5 Si 14	0	27.267	0	0	27.267	0	1.1219	0
6 Ca 20	0	21.77	0	0	21.77	0	0	42.882
7 Fe 26	0	981.04	0	0	981.04	0	0	0

REDSMELT PROCESS --- STREAM SUMMARY

Stream Number	18	19	20
Description	Hot Metal	Slag	Gases from SA
KG/HR SOLIDS	1021.8	0	0
KG/HR AQUEOUS	0	0	0
KG/HR MOLTEN3	0	151.19	0
KG/HR GASEOUS	0	0	80.638
KG/HR TOTAL	1021.8	151.19	80.638
Percent Solids	100	0	0
Sp.Gr.SOLIDS	7.1501	, O	0
Sp.Gr.AQUEOUS	0	0	0
Sp.Gr.MOLTEN3	0	3.009	0
Sp.Gr.GASEOUS	0	0	0.00042395
Sp.Gr.TOTAL	7.1501	3.009	0.00042395
Temperature C	576.54	576.54	576.54
Pressure kPa	101.33	101.33	101.33
Gas nm3/hr	0	0	61.134
Sol/Lig m3/hr	0.14291	0.050247	0
Component Mass Flow	/ Rates		
1 CaO KG/HR	0	0	0
2 CaO KG/HR	0	90.46	0
3 CO KG/HR	0	0	73.438
4 CO2 KG/HR	0	0	0
5 C KG/HR	40.547	0	0
6 Fe KG/HR	980.3	0	0
7 FeO KG/HR	0.94657	0	0
8 Fe2O3 KG/HR	0	0	0
9 Fe3O4 KG/HR	0	0	0
10 H2O KG/HR	0	- 0	0
11 H2O KG/HR	0	0	0
12 N2 KG/HR	0	0	0
13 O2 KG/HR	0	0	0
14 SiO2 KG/HR	0	0	0
15 SiO2 KG/HR	0	60.732	0
16 C5H8 KG/HR	0	0	0
17 C5H8 KG/HR	0	0	7.2
Element Mass Flow Ra	ates		*
1 H 1	0	0	0.85231
2 C 6	40.547	0	
3 N 7	0	 	0
40 8	0.21079	58,152	41.947
5 Si 14	0		
6 Ca 20	0	†	
7 Fe 26	981.04	-	

CASE DEFINITION

Title : REDSMELT PROCESS

Case :

Data Storage File Name : Redsmelt2.sfw

Mass Balance Option : ON Heat Balance Option : ON

Units of Mass : kilogram Units of Time : hour

Ambient Air Pressure : 101.325 kPa Standard Pressure : 101.325 kPa

Ambient Air Temperature : 20.00 C Standard Temperature : 0.00 C

Plant Site Latitude : 0.00 Degrees Plant Site Elevation : 0.00 Meters

COMPONENT DATA

```
ROW CNM
          CHF
                               PHC CMW
                                               SGF
 1 CaO CaO SI1
                56.0794 3.3100 0.0000
56.0794 3.3100 0.0000
                                           0.0000
 2 CaO CaO M37
                                  0.0000
                                           0.0000
 3 CO
      CO GC8 28.0106 0.0012
                                  0.0000 0.0000
  4 CO2 CO2 GC8 44.0100 0.0020 0.0000 0.0000
 5 C
       C SI1 12.0112 2.2500 0.0000 0.0000
 6 Fe Fe SI1 55.8470 7.8600 0.0000 0.0000 7 FeO FeO SI1 71.8464 5.7000 0.0000 0.0000 8 Fe2O3Fe2O3SI1 159.6922 5.2400 0.0000 0.0000 9 Fe3O4Fe3O4SI1 231.5386 5.1800 0.0000 0.0000
 10 H2O H2O LI3 18.0153 1.0000 0.0000 0.0000
 11 H2O H2O GC8
                 18.0153 0.0008 0.0000 0.0000
 12 N2 N2 GC8 28.0134 0.0012 0.0000 0.0000
 13 O2 · O2 GC8 31.9988 0.0014 0.0000 0.0000
 14 SiO2 SiO2 SI1 60.0848 2.6500 0.0000 0.0000
 15 SiO2 SiO2 M37 60.0848 2.6500 0.0000 0.0000 16 C5H8 C5H8 SI1 68.1195 0.6879 0.2491 0.2690 17 C5H8 C5H8 GC8 68.1195 0.0030 0.2491 0.2690
ROW CNM
            SOL A
                                          Wi COV A B C
                      В
                            С
                                  pH
         0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 1 CaO
  2 CaO 0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
          23.77 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
  3 CO
        1950.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
  4 CO2
         0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
  5 C
           0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
  6 Fe
 7 FeO
          0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 8 Fe2O3
         0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 9 Fe3O4 0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 15 SiO2
          0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 16 C5H8
 17 C5H8
           0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ROW CNM
          CRIT T CRIT P CRIT V ANTOINE VAPOR PRES A B C HENRY
        1 CaO
  2 CaO
        133.400 35.4638 93.100 6.24020 230.27 260.010 63426.0
 3 CO
  4 CO2 304.200 74.8792 94.800 9.81060 1347.79 273.000 1215.7
        0.000 0.0000 0.000 0.00000 0.00 0.00
  5 C
  6 Fe
         0.000 0.0000 0.000 0.0000 0.00
                                                      0.0
         7 FeO
                                                     0.0
  8 Fe2O3
                                                      0.0
                                                      0.0
  9 Fe304
                                                     0.0
0.0
0.0
 10 H2O
 11 H2O
 12 N2
          0.000 0.0000 0.000 0.0000 0.00 0.000
 13 02
 14 SiO2
         0.000 0.0000 0.000 0.00000 0.00 0.000
 15 SiO2
          0.000 0.0000 0.000 0.00000 0.00 0.000
 16 C5H8 503.000 41.2393 276.000 6.91820 1104.99 228.851
        503.000 41.2393 276.000 6.91820 1104.99 228.851
                                                      0.0
```

COMPONENT DATA

ROW	CNM	REFERENCI	Е Н25	HTE	-A HTE	-В нтк-	C HTE-D
	CaO	B672098	-151790	-4315	12.0730	0.4606	2.0088
2	CaO	B672098	-151790	-4315	12.0730	0.4606	2.0088
3	CO	YAWS	-26420	-1787	6.0661	0.9358	-0.3112
4	CO2	YAWS	-94050	-3105	8.4720	2.5871	1.0415
5	C	B672086	0	-2999	5.1802	0.2246	4.3597
6	Fe	B672151	0-	-7903	14.0914	-1.3293	11.6233
7	FeO	B672157	-65000	-3998	12.1207	1.0479	0.8685
8	Fe203	B672158	-197000	-20749	46.1517	-3.8751	21.9462
9	Fe304	B672160	-267300	-31312	71.0525	-7.8736	32.0732
10	H2O	B672180	-68315	-5071	16.1848	2.7637	0.0000
11	H2O	B672182	-57795	-2403	7.2906	1.3003	0.3596
12	N2 -	B672244	0	-2846	7.5728	0.2525	1.7794
13	O2	B672277	0	-2979	7.9696	0.2720	1.7697
14	SìO2	B672387	-217720	-8654	19.1651	-0.5456	8.8977
	SiO2	B672387	-217720	-8654	19.1651	-0.5456	8.8977
		YAWS	27950	-8316	19.7382	30.7726	-0.9067
	C5H8	YAWS	27950	-8316	19.7382	30.7726	-0.9067
				0020	23.,302	3011120	0.3007
ROW	CNM	T	EMP RANGE oK	HTG	-A HTG	-B HTG-	·C HTG-D
	CaO	298.2	2000.0	-146099	-14.8529	-4.7096	-10.7418
2	CaO	298.2	2000.0	-146099	-14.8629	-4.7096	-10.7418
3	CO	298.0	700.0	-25393	-46.6664	-5.1645	-2.2650
	CO2	298.0	700.0	-93224	-48.5944	-8.4916	-2.4252
	С	298.2	3000.0	2405	-3.3866	-1.5836	-5.1587
6	Fe	298.2	1811.0	2679	-8.2139	-4.0925	-5.4957
	FeO	298.2	1600.0	-60048	-19.0598		-9.2221
8	Fe203	298.2	1800.0	-182323	-34.6418	-13.7715	-28.2755
	Fe304	298.2	1800.0	-243067	-58.6967	-18.9430	-46.8195
	H2O	298.2	373.2	-70630	-1.0739	-26.4253	0.0000
11	H2O	298.2	2000.0	-54212	-48.4557	-3.8711	-6.7579
12	N2	298.2	3000.0	5078	-51.3044	-2.2358	-9.9139
13	02	298.2	3000.0	5395	-54.8302	-2.3535	-10.5960
14	SiO2	298.2	2000.0	-210342	-16.8483	-6.1496	-14.5464
15	SiO2	298.2	2000.0	-210342	-16.8483	-6.1496	-14.5464
	C5H8	135.9	318.0	23803	-68.4779	-61.0649	-1.8797
17	C5H8	135.9	318.0	23803	-68.4779	-61.0649	-1.8797
	CNM		ES RANGE kPa				
	CaO	0.0	0.0				
	CaO	0.0	0.0				
	CO	0.0	0.0				
	CO2	0.0	0.0				
	C T	0.0	0.0				
	Fe	0.0	0.0				
	FeO	0.0	0.0				
	Fe203	0.0	0.0				4
	Fe304	0.0	0.0				
	H2O	0.0	0.0				
	H2O	50.0	120.0				
	N2	0.0	0.0				
	02	0.0	0.0			•	
	SiO2	0.0	0.0				
	SiO2	0.0	0.0				
	C5H8	0.0	0.0				
17	C5H8	0.0	0.0				

FLOWSHEET DATA

NO	OPR	UNIT PROCESS	IS1	I\$2	IS3	IS4	IS5	IS6	INV	OS1	OS2	OS3	OS4	OS5	OS6	
1	SEC	REDSMELT PROCESS	0	0	0	0	0	0	0	0	0	0	0	ō	0	
2	MIX	PELLETIZER	1	2	3	4	0	0	0	5	0	0	0	0	Ō	
3	SPP	RHF ZONE 1	6	5	0	0	0	0	0	7	8	0	0	Ō	Ö	
4	SPP	RHF ZONE 2	9	0	0	8	7	0	0	10	11	0	0	0	0	
5	SPP	RHF ZONE 3	12	0	0	11	10	0	0	13	14	0	0	0	0	
6	SPP	SUBMERGED ARC FURNACE	16	17	0	13	0	0	0	18	19	20	0	۵	0	

OP	PROCESS STEP	INPUT STREAM	HEAT REACT	HEAT SOLUT	SUMMARY ENERGY INPUT	HEAT LOSS	REQRD	OUTPUT STREAM	TOTAL
1	REDSMELT PROCESS	0	0	0		0	 0	++ 0	0
2	PELLETIZER	1	0	0	0	0	Ō	-1	Ö
- 3	RHF ZONE 1	85	637	0	0	0	561	-1283	Ō
4	RHF ZONE 2	1283	-148	0	0	0	126	-1261	0
5	RHF ZONE 3	1261	-709	0	0	0	598	-1151	0
6	SUBMERGED ARC FU	226	-101	0	0	-6	a	-118	0

		2	STREAM TE	EMPERATURES	AND ENTH	ALPIES
NO.	STREAM	TEMP-C	TEMP-F	KCAL/HR	BTU/HR	KJ/HR
1	Tron Ore	25 AA	77 00	240 00	052.0	
2	Coal	25.00	77.00	240.00	953.0	1004.0
2	Iron Ore Coal Binder	25.00	77.00	856.00	3395.0	3580.0
2	binder	25.00	//.00	0.00	-1.0	-1.0
4	Water	25.00	77.00	0.00	0.0	0.0
5	Water Green Pellets	25.00	77.00	1096.00	4347.0	4584.0
0	Combustion Air	300.00	572.00	83455.00	331177.0	349177.0
7	Pellets from Zone 1	1400.00	2552.00	587002.00	2329413.0	2456017.0
- 8	Gases from Zone 1	1400.00	2552.00	696261.00	2762986.0	2913155.0
9	Combustion Air	300.00	572.00	0.00	0.0	0.0
10	Pellets from Zone 2	1400.00	2552.00	511340.00	2029162.0	2139448.0
11	Gases from Zone 2	1400.00	2552.00	750057.00	2976465.0	3138237.0
12	Combustion Air	300.00	572.00	58.00	228.0	241 0
13	DRI	1100.00	2012.00	225639.00	895408 0	944074 0
14	Gases from RHF	1400.00	2552.00	925556.00	3572902 0	347074.0
15	Air	25.00	77.00	418 00	1658 0	1749 0
16	Air Coal	25.00	77 00	70.00	277 0	202 0
17	Lime	25.00	77.00	-1 00	277.0	232.0
18	Hot Metal	576 EA	1000 70	-1.00	74.0156.0	-2.0
19	Hot Metal Slag	3 /·0 + 3 4	1003.78	33/18.00	340156.0	358644.0
7.2	Cases from CAE	5/6.54	1069.78	188/8.00	74914.0	78986.0
20	Gases from SAF	576.54	1069.78	13735.00	54505.0	57468.0

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

	TIME	ACFM	SCFM	M3/HR	NM3/HR
6 Combustion Air 8 Gases from Zone 1 9 Combustion Air 11 Gases from Zone 2 12 Combustion Air 14 Gases from RHF 15 Air 20 Gases from SAF	100.0000 100.0000 100.0000 100.0000 100.0000 100.0000	1210.822 4831.826 0.001 5068.443 0.835 6537.567	577.050 788.789 0.000 827.413 0.398 1067.204 201.416	2057.20 8209.33 0.00 8611.34 1.42 11107.40	980.413 1340.161 0.001 1405.784 0.676 1813.190 342.209

VOLUMETRIC FLOW RATE OF STREAMS WITH LIQUIDS AND SOLIDS ONLY

	STREAM +	TIME		LPS		
	Iron Ore		1.245816			
2	Coal	100.0000	1.456539	0.091894	0.330818	7.93963
3	Binder	100.0000	0.021283	0.001343	0.004834	0.11601
	Water		0.441558			
	Green Pellets					
	Pellets from Zone 1					10.17486
10	Pellets from Zone 2	100.0000	1.620290	0.102225	0.368010	8.83224
13	DRI	100.0000	0.832248	0.052507	0.189025	4.53661
16	Coal	100.0000	0.109557	0.006912	0.024883	0.59720
17	Lime	100.0000	0.079810	0.005035	0.018127	0.43505
18	Hot Metal	100.0000	0.629199	0.039697	0.142907	3.42978
19	Slag	100.0000	0.221230	0.013958	0.050247	1.20593

MASS FLOW RATES - KG/HR

NO.	STREAM +	KG/HR-SI	KG/HR-LI	KG/HR-M3	KG/HR-GC	KG/HR-TC
1	Iron Ore	1446.000	0.0000	0.0000	0.000	1446.000
2	Iron Ore Coal	490.200	25.8000	0.0000	0.000	516.000
3	Binder	16.000	0.0000	0.0000	0.000	16.000
4	Water	0.000	100.0000	0.0000	0.000	100.000
5	Binder Water Green Pellets	1952.200	125.8000	0.0000	0.000	2078.000
6	Combustion Air	0.000	0.0000		1261.474	
7	Pellets from Zone 1	1739.331	0.0000	0.0000	0.000	1739.331
8	Gases from Zone 1	0.000	0.0000	0.0000	1600.143	1600.143
9	Combustion Air	0.000	0.0000	0.0000	0.001	0.001
	Pellets from Zone 2				0.000	1610.480
11	Gases from Zone 2	0.000	0.0000	0.0000	1728.994	1728.994
12	Combustion Air	0.000	0.0000	0.0000	0.870	0.870
	DRI	1153.627	0.0000	0.0000	0.000	1153.627
14	Gases from RHF	0.000	0.0000	0.0000	2186.718	2186.718
	Air		0.0000	0.0000	440.311	440.311
16	Coal Lime	40.000	0.0000	0.0000	0.000	40.000
17	Lime	60.000	0.0000	0.0000	0.000	60.000
18	Hot Metal	1021.797	0.0000	0.0000	0.000	1021.797
19	Slag	0.000	0.0000	151.1920	0.000	151.192
20	Gases from SAF	0.000	0.0000	0.0000	80.638	80.638

SPECIFIC GRAVITIES

NO.	STREAM +	PCS		SG-LI			
1	Iron Ore	100.0000	5.1103	0.0000	0.0000	0.0000	5.1103
2	Coal	95.0000	1.6075	0.9971	0.0000	0.0000	1.5598
3	Binder	100.0000	3.3100	0.0000	0.0000	0.0000	3.3100
4	Water	0.0000	0.0000	0.9971	0.0000	0.0000	0.9971
5	Green Pellets	93.9461	3.2935	0.9971	0.0000	0.0000	2.8905
6	Combustion Air	0.0000	0.0000	0.0000	0.0000	0.0006	0.0006
7	Pellets from Zone 1	100.0000	4.1027	0.0000	0.0000	0.0000	4.1027
8	Gases from Zone 1	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
9	Combustion Air	0.0000	0.0000	0.0000	0.0000	0.0006	0.0006
10	Pellets from Zone 2	100.0000	4.3762	0.0000	0.0000	0.0000	4.3762
11	Gases from Zone 2	0.0000	0.0000	0.0000	00000	0.0002	0.0002
12	Combustion Air	0.0000	0.0000	0.0000	0.0000	0.0006	0.0006
13	DRI	100.0000	6.1030	0.0000	0.0000	0.0000	6.1030
		0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
15	Air	0.0000	0.0000	0.0000	0.0000	0.0012	0.0012
16	Coal	100.0000	1.6075	0.0000	0.0000	0.0000	1.6075
17	Lime	100.0000	3.3100	0.0000	0.0000	0.0000	3.3100
	Hot Metal	100.0000	7.1501	0.0000	0.0000	0.0000	7.1501
19	Slag	0.0000	0.0000	0.0000	3.0090	0.0000	3.0090
20	Gases from SAF	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

				TIME		SCFM	M3/HR	NM3/HR
6 Con 8 Gas 9 Con 11 Gas 12 Con 14 Gas 15 Air	bustion es from bustion es from bustion es from	Air Zone Air Zone Air RHF	1	100.0000 100.0000 100.0000 100.0000 100.0000 100.0000	1210.822 4831.826 0.001 5068.443 0.835 6537.567 219.851	827.413 0.398 1067.204	2057.20 8209.33 0.00 8611.34 1.42 11107.40 373.53	980.413 1340.161 0.001 1405.784 0.676 1813.190 342.209

VOLUMETRIC FLOW RATE OF STREAMS WITH LIQUIDS AND SOLIDS ONLY

NO.	STREAM +	TIME		LPS		
	Iron Ore			0.078599		6.79098
2	Coal	100.0000	1.456539	0.091894	0.330818	7.93963
3	Binder	100.0000	0.021283	0.001343	0.004834	0.11601
	Water			0.027858		2.40694
	Green Pellets					
7	Pellets from Zone 1	100.0000	1.866596	0.117765	0.423953	10.17486
10	Pellets from Zone 2	100.0000	1.620290	0.102225	0.368010	8.83224
13	DRI	100.0000	0.832248	0.052507	0.189025	4.53661
16	Coal	100.0000	0.109557	0.006912	0.024883	0.59720
17	Lime	100.0000	0.079810	0.005035	0.018127	0.43505
18	Hot Metal	100.0000	0.629199	0.039697	0.142907	3.42978
19	Slag	100.0000	0.221230	0.013958	0.050247	1.20593
18	Hot Metal	100.0000	0.079810 0.629199	0.005035 0.039697	0.018127 0.142907	0.435

MASS FLOW RATES - KG/HR

	STREAM +	KG/HR-SI		KG/HR-M3		
	Iron Ore					
2	Coal	490.200	25.8000	0.0000	0.000	
3	Binder	16.000	0.0000	0.0000	0.000	16.000
4	Water	0.000	100.0000	0.0000	0.000	
5	Binder Water Green Pellets	1952.200	125.8000	0.0000	0.000	
6	Combustion Air	0.000	0.0000		1261.474	1261.474
	Pellets from Zone 1				0.000	1739.331
8	Gases from Zone 1	0.000	0.0000	0.0000	1600.143	1600.143
	Combustion Air		0.0000	0.0000	0.001	0.001
10	Pellets from Zone 2	1610.480	0.0000	0.0000	0.000	1610.480
11	Gases from Zone 2	0.000	0.0000	0.0000	1728.994	1728.994
12	Combustion Air	0.000	0.0000	0.0000	0.870	0.870
13	DRI	1153.627	0.0000	0.0000	0.000	1153.627
14	Gases from RHF		0.0000		2186.718	
15	Air	0.000	0.0000	0.0000	440.311	440.311
16	Coal	40.000	0.0000	0.0000	0.000	40.000
	Lime	60.000	0.0000	0.0000	0.000	60.000
18	Hot Metal	1021.797	0.0000	0.0000	0.000	1021.797
19	Slag	0.000		151.1920		
20	Gases from SAF	0.000		0.0000		80.638

SPECIFIC GRAVITIES

NO.	STREAM	PCS	SG-SI			SG-GC	SG-TC
1	Iron Ore	100.0000	5.1103	0.0000	0.0000	0.0000	5.1103
2	Coal	95.0000	1.6075	0.9971	0.0000	0.0000	1.5598
3	Binder	100.0000	3.3100	0.0000	0.0000	0.0000	3.3100
	Water	0.0000	0.0000	0.9971	0.0000	0.0000	0.9971
5	Green Pellets	93.9461	3.2935	0.9971	0.0000	0.0000	2.8905
6	Combustion Air	0.0000	0.0000	0.0000	0.0000	0.0006	0.0006
7	Pellets from Zone 1	100.0000	4.1027	0.0000	0.0000	0.0000	4.1027
8	Gases from Zone 1	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
	Combustion Air		0.0000	0.0000	0.0000	0.0006	0.0006
10	Pellets from Zone 2	100.0000	4.3762	0.0000	0.0000	0.0000	4.3762
11	Gases from Zone 2	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
12	Combustion Air	0.0000	0.0000	0.0000	0.0000	0.0006	0.0006
13	DRI	100.0000	6.1030	0.0000	0.0000	0.0000	6.1030
14	Gases from RHF	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002
15	Air	0.0000	0.0000	0.0000	0.0000	0.0012	0.0012
16	Coal	100.0000	1.6075	0.0000	0.0000	0.0000	1.6075
17	Lime	100.0000	3.3100	0.0000	0.0000	0.0000	3.3100
		100.0000	7.1501	0.0000	0.0000	0.0000	7.1501
		0.0000	0.0000	0.0000	3.0090	0.0000	3.0090
20	Gases from SAF	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004

SOL:	IDS - KG/HR STREAM +	CaO	C	Fe	FeO	Fe2O3	Fe304	SiO2
-	Iron Ore Coal Binder Green Pellets Pellets from Zone 1 Pellets from Zone 2 DRI Coal Lime Hot Metal	4 4 4 4 6 6 6						
COT	TDO NO (UD							
2 5 16	STREAM Coal Green Pellets Coal	88.2360 88.2360 7.2000						
NO.	IDS - WEIGHT PERCENT STREAM +	Ca0	C	Fe	FeO	Fe203	Fe304	SiO2
1 2 3 5 7 10 13 16 17	Iron Ore Coal Binder Green Pellets Pellets from Zone 1 Pellets from Zone 2 DRI Coal Lime Hot Metal	1.000 0.000 100.000 1.560 1.751 1.891 2.640 0.000 100.000	0.0000 76.0000 0.0000 19.0837 16.9468 16.1191 3.6093 76.0000 0.0000 3.9682	0.0000 0.0000 0.0000 0.0000 0.0000 72.2836 0.0000 0.0000 95.9391	0.0000 0.0000 0.0000 0.0000 0.0000 78.3675 16.4103 0.0000 0.0000	97.0000 0.0000 0.0000 71.8482 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 77.9482 0.0000 0.0000 0.0000	2.00000 6.00000 0.00000 2.98801 3.35370 3.62203 5.05640 6.00000 0.00000
SOL	IDS - WEIGHT PERCENT STREAM +							
2 5 16	Coal Green Pellets Coal	18.0000 4.5198 18.0000						
AQU.	EOUS - KG/HR STREAM +	H2O					÷	
2 4	Coal Water Green Pellets	25.800 100.000						
NO.	EOUS - WEIGHT PERCEN STREAM	т н20						
2 4	Coal	100.000 100.000 100.000					·	
NO.	EOUS - GRAMS PER LIT STREAM	ER H2O						
2 4	Coal Water Green Pellets	997.116 997.116 997.116				·		

MOL'	FEN3 - KG/HR STREAM +	CaO	SiO2				
19	Slag	90.4600	60.7320				
MOL'	TEN3 - WEIGHT PERCENT STREAM +	CaO	SiO2				
19	Slag	59.8312	40.1688				
GASI NO.	EOUS - KG/HR STREAM +	CO	CO2	H2O	N2	02	C5H8
6 8 9 11 12 14 15 20	Combustion Air Gases from Zone 1 Combustion Air Gases from Zone 2 Combustion Air Gases from RHF Air Gases from SAF	0.000 280.816 0.000 280.816 0.000 879.147 0.000 73.438	0.000 128.850 0.000 257.701 0.000 116.223 0.000 0.000	0.000 219.142 0.000 219.142 0.000 219.142 0.000 0.000	971.335 971.335 0.001 971.336 0.670 972.005 339.040 0.000	290.139 0.000 0.000 0.000 0.200 0.200 101.272 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 7.20000
GASI	EOUS - WEIGHT PERCENT STREAM +	CO	CO2	H2O	N2	02	C5H8
6 8 9 11 12 14 15 20	Combustion Air Gases from Zone 1 Combustion Air Gases from Zone 2 Combustion Air Gases from RHF Air Gases from SAF	0.0000 17.5494 0.0000 16.2416 0.0000 40.2040 0.0000 91.0712	0.0000 8.0524 0.0000 14.9047 0.0000 5.3149 0.0000 0.0000	0.0000 13.6951 0.0000 12.6745 0.0000 10.0215 0.0000 0.0000	77.0000 60.7030 77.0000 56.1792 77.0000 44.4504 77.0000	23.0000 0.0000 23.0000 0.0000 23.0000 0.0092 23.0000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 8.92877
GASI NO.	EOUS - VOLUME PERCENT STREAM +	r CO	CO2	H20	N2	02	C5H8
6 8	Combustion Air Gases from Zone 1 Combustion Air Gases from Zone 2 Combustion Air Gases from RHF Air Gases from SAF	0.0000	0.00000	0.0000	79.2708	20.7292	0.00000

STREAM DATA IN MOLES

NO.	IDS - KG MOLES/HR STREAM							
1 2 3 5 7 10	Iron Ore Coal Binder Green Pellets Pellets from Zone 1 Pellets from Zone 2 DRI Coal Lime Hot Metal	0.25785 0.00000 0.28531 0.54316 0.54316	0.0000 31.0172 0.0000 31.0172 24.5406 21.6129	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	8.78327 0.00000 0.00000 8.78327 0.00000	0.00000 0.00000 0.00000 0.00000 5.85551	0.48132 0.48951 0.00000 0.97083 0.97083
SOL:	IDS - KG MOLES/HR STREAM	C5H8						
2 5 16	STREAM Coal Green Pellets Coal	1.29531 1.29531 0.10570	•					
NO.	IDS - MOLE PERCENT STREAM	CaO	C	Fe	FeO	Fe203	Fe304	SiO2
1 2 3 5 7 10 13 16 17	Iron Ore Coal Binder Green Pellets Pellets from Zone 1 Pellets from Zone 2 DRI Coal Lime Hot Metal	2.708 0.000 100.000 1.275 1.702 1.335 2.409 0.000 100.000	0.0000 94.5588 0.0000 72.7936 76.9054 53.1115 15.3750 94.5588 0.0000 16.1195	0.0000 0.0000 0.0000 0.0000 0.0000 66.2237 0.0000 0.0000 83.8176	0.0000 0.0000 0.0000 0.0000 43.1680 11.6865 0.0000 0.0629	92.2376 0.0000 0.0000 20.6133 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 18.3500 0.0000 0.0000 0.0000	5.05458 1.49231 0.00000 2.27842 3.04238 2.38571 4.30577 1.49231 0.00000 0.00000
SOL:	IDS - MOLE PERCENT STREAM	C5H8				i .		
2 5 16	Coal Green Pellets Coal	3.94888 3.03994 3.94888						
NO.	ΓΕΝ3 - KG MOLES/HR STREAM +	Ca0	SiO2					
19	Slag		1.01077					
NO.	TEN3 - MOLE PERCENT STREAM +	Ca0	Si02					•
	· _ •	61.4774	•					
	EOUS - KG MOLES/HR STREAM +	CO	CO2 ⁻	Н20	N2	. 02	C5H8	
6 8 9 11 12 14 15	Combustion Air Gases from Zone 1 Combustion Air Gases from Zone 2 Combustion Air Gases from RHF Air Gases from SAF	0.0000 10.0254 0.0000 10.0254 0.0000 31.3863 0.0000	0.00000 2.92776 0.00000 5.85551 0.00000 2.64083 0.00000	0.0000 12.1642 0.0000 12.1642 0.0000 12.1642 0.0000	34.6739 34.6739 0.0000 34.6740 0.0239 34.6979 12.1028	9.06718 0.00000 0.00001 0.00001 0.00625 0.00626 3.16486	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	

REDSMELT PROCESS

STREAM DATA IN MOLES

GASEOUS - MOLE PERCENT NO. STREAM	co	CO2	H2O	N2	~ -	C5H8
6 Combustion Air 8 Gases from Zone 1 9 Combustion Air 11 Gases from Zone 2 12 Combustion Air 14 Gases from RHF 15 Air	0.0000 16.7673 0.0000 15.9846 0.0000 38.7986 0.0000	0.00000 4.89663 0.00000 9.33611 0.00000 3.26450 0.00000	0.0000 20.3444 0.0000 19.3947 0.0000 15.0369 0.0000	79.2708 57.9917 79.2708 55.2846 79.2708 42.8922 79.2708	20.7292 0.0000 20.7292 0.0000 20.7292 0.0077 20.7292	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000
20 Gases from SAF	96.1248	0.00000	0.0000	0.0000	0.0000	3.87521

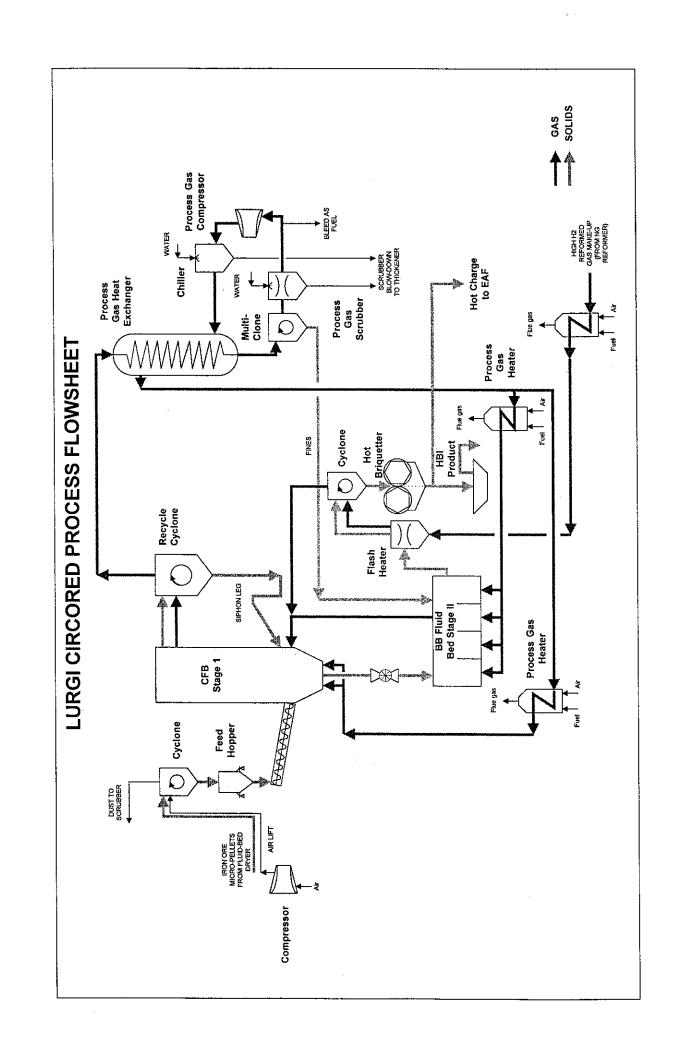
		·	

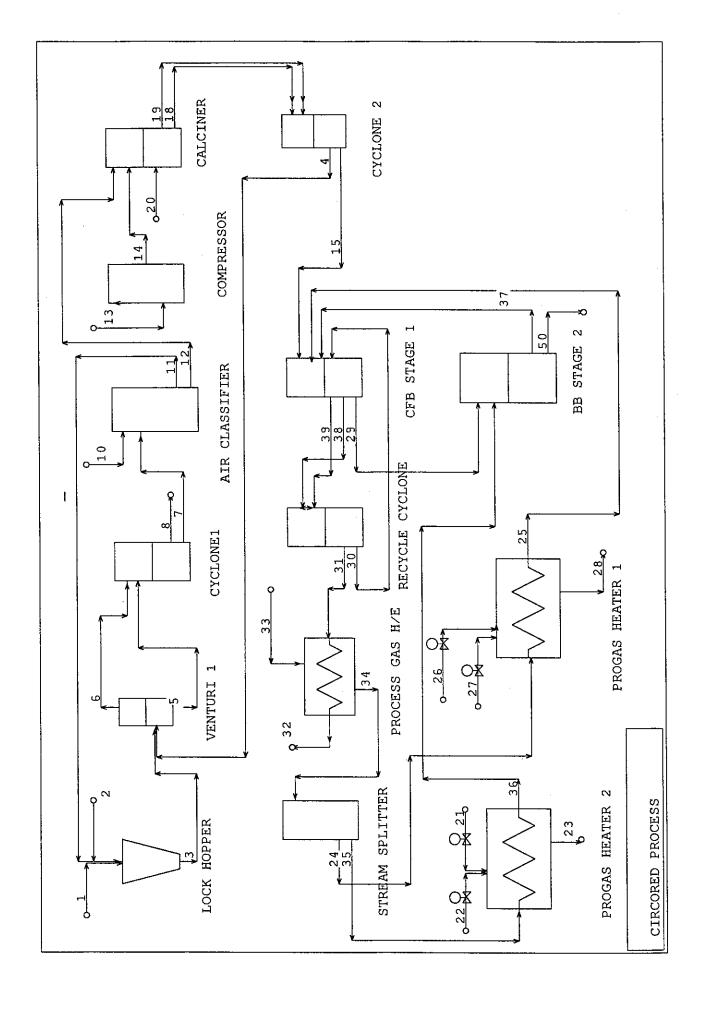
APPENDIX E-6: CIRCORED FLUID-BED REDUCTION PROCESS (NATURAL GAS REDUCTANT)

CIRCORED PROCESS

PROCESS BACKGROUND:

The Circored process is a two stage fluidized bed process that operates at low reducing temperatures and uses natural gas to produce reducing gas by means of reforming. The process uses ore fines that have a particle size between 1mm and 0.03mm and produces HBI.


PROCESS DESCRIPTION:


The iron ore fines are first dried and heated to about 800C in a fluid bed preheater system. The dried fines are then charged to a circulating fluidized bed (CFB). The heat required is generated by the combustion of natural gas and air that is introduced into the CFB. The fines are reduced to about 70% metallization in CFB. The process reactions are endothermic and the required energy is introduced in the form of preheated iron ore fines and process gases. The pressure in the CFB is about 4 bars and the reaction temperature is about 630C. This temperature is lower than that used for other reduction processes, and hence avoids the sticking problems that occur with high temperature fines-based processes. The fluidizing gas in the CFB is a mixture of heated process gas which enters the lower part of the CFB, and the off-gas from the second stage conventional fluidized bed reactor, Stage II Reactor, FB. The retention time in the CFB is relatively short, of the order of 15 to 20 minutes.

A portion of the partially metallized fines are withdrawn from CFB and enter the FB reactor. The FB reactor is compartmentalized into several sections, and has gas velocities in the range of 0.5 to 0.6 m/s. The fines reach a final metallization of 92 to 93% in the FB reactor. The off-gas leaving the top of the FB passes on to the CFB. The product leaves the FB reactor at about 630C, is then heated to about 680C, and briquetted.

PROCESS ADVANTAGES

Ability to process directly low cost fine ore Excellent heat and mass transfer conditions in CFB Low investment costs Low operating cost

Circored Process --- MetSim Model --- Description

The MetSim model for this process is largely based upon a production flowsheet for SAIDR, Maputo by Lurgi.

Flowsheet Description

For this case, in the MetSim model several unit operations (from Lock hopper through Cyclone 2) are shown. These are based on a flowsheet developed by Lurgi on the micro-pelletization of iron ore fines. Some of these unit operations are not included in the process flowsheet as the main stress is on the conversion of iron ore to DRI. In this early portion of the process, the Iron Ore Fines (Stream 1) enter into the Lockhopper along with some air (Stream 2) and then moves towards Venturi 1 along with a recycle stream where moisture from the ore fines is absorbed by air as Stream 6. Stream 5, containing dried iron ore fines is separated as Stream 7 in Cyclone 1 from Stream 8. The stream 7 passes through an Air Classifier where under-sized particles are removed from ore fines and micropelletized and sent back to the Lockhopper. With the help of compressed air (Stream 14) Fuel is burnt (not shown) to heat the ore fines to about 870C. Again very fine iron ore is separated in Cyclone 2 and remaining ore at 750C (Stream 15) now enters the CFB Stage 1 Reactor.

In the Circulating Fluidized Bed, iron ore is partially reduced with the help of one-third of fresh reformed gas (Stream 25) and the upcoming gases (Stream 37) from the Stage 2 reactor called Bubbling Bed reactor. The partially reduced ore (Stream 29) is sent to BB Stage 2 reactor. Very fine iron ore (Stream 38) gets entrapped in the outgoing top gas (Stream 39). The Recycle Cyclone separates solid particles from the gas and recycles them back to CFB reactor as Stream 30. Stream 31, Top gas is used to preheat incoming reformed gas (Stream 33). The cooled top gas (Stream 32) can either be used for reforming reactions or any other purpose as the stream has high calorific value. The preheated reforming gas stream (90% H2 and 10% CO) is split in two parts: Stream 24 (one-third portion) for CFB and Stream 35 (two-thirds portion) for BB. Both these are further heated to 675C in two Process Gas Heaters by burning Natural gas and Air. These hot streams then enter the reactors and perform reduction of iron ore fines. Stream 50 is the final reduced iron or called Direct Reduced Iron containing almost no carbon but almost all slag.

Model Assumptions:

Cyclone 1: 100% efficiency is assumed.

Air Classifier: 15% very fine particles are assumed.

Compressor: No temperature increase during compression.

Calciner: The output temperature is 870C.

Cyclone 2: 100% efficiency is assumed. The output temperature is 750C.

CFB Stage 1: Partial reduction takes place in this reactor. Out of that only 1% reduction takes place with CO. Rest takes place with H2.

Recycle Cyclone: 100% efficiency is assumed.

Process Gas Heat Exchanger: 100% efficient; No heat losses are assumed. Both outlet temperatures are same.

BB Stage 2: 97% reduction of FeO to Fe takes place. No carry over of particles in top gas is assumed.

Results

It was decided to achieve same operating conditions as were outlined in the SAIDR proposal by Lurgi. Assumptions were made about the composition of the ore fines. The model results are very close to the numbers provided by Lurgi.

Stream Number	1	2	3		5	6	7	8	10	11
Description	Iron Ore to L		Iron Ore from	Fine Iron Ore		Moist Air	Coarse Iron	Moist Air	Air for Classif	·
MT/HR SOLIDS	1095.6	O O	1323.1	193.34	1516.4	0		Micial VIII	· · · · · · · · · · · · · · · · · · ·	227.46
MT/HR AQUEOUS	95.3	0	95.3	195.54	1310.4			0		227.40
MT/HR GASEOUS	0	1	1.15	2.85			0	99.3		0.15
MT/HR TOTAL	1190.9	1	1419.5	196.19	1516.4	99.3	1516.4			227.61
Percent Solids	91,998	0	93.205	98.547	100			99.0		99.934
Sp.Gr.SOLIDS	5,0205	0		5.0205	5.0205			0		
Sp.Gr.AQUEOUS	0.99507	0	-	0.0200	 					
Sp.Gr.GASEOUS	0.00007		0.0010176	0.0014224	0		0	0.00038893	 	0.00061356
Sp.Gr.TOTAL	3.7927	0.001152	0.9519	0.09607	5.0205		5.0205			0.00001330
Temperature C	32	32	72.313	-26	300	300		300		299.81
Pressure kPa	101.33	101,33	101.33	101.33	101,33				 	101.33
Gas nm3/hr	0	777	893,55	2214.4	107.00				 	116.55
Sol/Lig lps	8.72E+01	0		10,697	8.39E+01	0		1.222.100		
Sol/Lig lph	3.14E+05	0	 	38510	3.02E+05					
Component Mass Flow		·			0.022.00		0.022.00			7,0000
1 Fe2Q3 MT/HR	101,12	0	122.12	17.845	139.96	1 0	139,96) 0	20,995
2 Fe3Q4 MT/HR	918.22	0			1270.9					
3 FeO MT/HR	0,0.22	 	 		 	 		+		
4 Fe1 MT/HR	0		 			·			4	
5 Si102 MT/HR	11.723	0	}	2.0688	· · · · · · · · · · · · · · · · · · ·	 	 			
6 Al2O3 MT/HR	8.8744		 	1.5661	12.283	<u> </u>			·	
7 P1 MT/HR	0.66832	1		0.11794	0.92501	 				
8 Cu1 MT/HR	0.39442	0	0.4763	0.069603	0.54591					
9 Ca1O1 MT/HR	7.7788		 	1.3727	10.767			,	\	
10 Mg1O1 MT/HR	31.992	. 0	38.634	5.6456				 		+
11 Ti102 MT/HR	12.052	0	14.554	2.1268	16.681	-	16.681	1	0	
12 S1 MT/HR	0.32868	0	0.39692	0.058003	0.45492			 		
13 V1 MT/HR	0.71214	0	0.85999	0.12567	D.98567		0.98567	, (0	1
14 Co1 MT/HR	0.28486	0	0.344	0.050269	0.39427		0.39427	, (0.05914
15 Ni1 MT/HR	0.32868	0	0.39692	0.058003	0,45492		0.45492	2)	0.068238
16 Zn1 MT/HR	0.4492	. 0	0.54246	0.07927	0.62173		0.62173	3 . (0	0.093259
17 Pb1 MT/HR	0.66832	2 0	0.80707	0.11794	0.92501	(0.92501	(5 0	0.13875
19 H2O MT/HR	95.3	3 0	95.3)) () () (0	0
20 H2O MT/HR	C) .)			95.3	3	95.3	3 (0
21 N2 MT/HR		0.768	0.8832	2.1888		3.072	2	3.072	2 0.768	0.1152
22 O2 MT/HR		0.232	0.2668	0.6612	!	0.928	3 (0.928	0.232	0.0348
23 C1H4 MT/HR		0	0) () ((0) () (0
24 C102 MT/HR			0) <u> </u>) () () (0 0	0
25 H2 MT/HR			+	+	-) () . () (0
26 CO MT/HR								0	0 0	0
Element Mass flow Ra		T	,		,	т.	,			
1 H 1	10.664	+	10.664			+	+			
2C 6		+							0	
3N 7			-	+	 	 		3.072		+
40 8	398.99			 						· · · · · · · · · · · · · · · · · · ·
5 Mg 12	19.294	-		 	-	t		1		
6 Al 13	4.6968	+	5.6719				+			0.97511
7 Si 14	5.4798	+		+						1,1377
8 P 15	0.66832		0.80707		 	+	0.9250	 		0.13875
9 \$ 16	0.32868	+	0.39692		+		0.4549		0 0	_
10 Ca 20	5.5595	1	6.7137			+	7.694			1,1542
11 Ti 22	7.225	 	8.7251		_		11	 		1.5
12 V 23	0.71214	+	0.85999	-	+		0.9856		+	0.14785
13 Fe 26	735,15		887.79				1017.		4	152.63
14 Co 27	0.28486	+	0.344			+	0.3942	· 		0.05914
15 Ni 28	0.32868	+ -	0.39692				0.4549			0,068238
16 Cu 29	0.39442		0.4763	+			0.5459		0 0	+
17 Zn 30	0.4492		0.54246				0.6217			0.093259
18 Pb 82	0.66832	2	0.80707	'] 0.11794	0.92501	1 (0.9250	<u> </u>	0 0	0.13875

Stream Number	12	13	14	15	18	19	20	21	22	23	24
Description				Iron Ore from			Air to Calcine		Natural gas t	Exhaust from	
MT/HR SOLIDS	1288.9	0	0		1288.9	D	0	0	0	0	
MT/HR AQUEOUS	0	0	0	0	0	0	0	D			
MT/HR GASEOUS	0.85	1	1	0	0	2.85	1	4187,3	205.47	4392.7	772.2
MT/HR TOTAL	1289.8	1	1	1095,6	1288.9	2.85	1	4187.3	205.47	4392.7	772.2
Percent Solids	99,934	0	0		100	0	Ö	0			
Sp.Gr.SOLIDS	5.0205	0	0		5.0205	0					
Sp.Gr.AQUEOUS	0	Ö	0		0	0					
Sp.Gr.GASEOUS	0.00061356	0.001152	0.001152	0	0	0.00030752	0.001152	0.001152	0.0006407	0.00035743	
Sp.Gr.TOTAL	0.78545	0.001152	0.001152	5.0205	5.0205	0.00030752	0.001152	0.001152	0.0006407	0.00035743	4.3836E-05
Temperature C	299.81	32	32	750	870	870		32	32		344.62
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33		ļ	1.01E+02
Gas nm3/hr	660.45	777	777	0	0	2214.4	777	3.25E+06	2.87E+05	3,54E+06	7.79E+06
Sol/Liq lps	71.316	0	0	6.06E+01	7.13E+01	0		0.202.00	 		
Sol/Lig lph	2.57E+05	0			2.57E+05	0					
Component Mass Flow		<u>~</u>		2.102.700	2.01 2.00			L	<u> </u>	'I	
1 Fe2Q3 MT/HR	118.97	О	0	101.12	118.97	0	0	0		0	0
2 Fe3O4 MT/HR	1080.3	0	 -		1080.3	0					
3 FeO MT/HR	0	0				•					
4 Fe1 MT/HR	0	0									-
5 Si1O2 MT/HR	13.792	0		 	13.792	0				 	1
6 AI2O3 MT/HR	10.44	0			10.44	0	+			 	
7 P1 MT/HR	0.78626	Ö			0.78626	0				 	
8 Cu1 MT/HR	0.46402	0			0.46402	0					
9 Ca1O1 MT/HR	9.1515	0			9.1515		+				
10 Mg 101 MT/HR	37.637	0			37.637	. 0	+				
11 Ti102 MT/HR	14.178	- 6			14.178					+	
12 S1 MT/HR	0,38668	0		 	0.38668	0			 		
13 V1 MT/HR	0,83782	- 6			0.83782		 				
14 Co1 MT/HR	0.33513	- 0		 	0.33513	} · 					
15 Nit MT/HR	0,38668	0			0.38668	 			 	+	
16 Zn1 MT/HR	0,52847				0.52847				 		
17 Pb1 MT/HR	0.78626	0			0.78626		******			+	+
19 H2O MT/HR	0.70020								 		
20 H2O MT/HR	0						 	·		+	
21 N2 MT/HR	0.6528	0.768	0.768	0		 	+		· · · · · · · · · · · · · · · · · · ·		
22 Q2 MT/HR	0.1972	0.232				 - 	-	 			0
23 C1H4 MT/HR	0.1072			 	}			 			
24 C1O2 MT/HR	-			<u> </u>			}	}	+	 	+
25 H2 MT/HR	0			 		ļ			ļ		
26 CO MT/HR	-			 			+		 		
Element Mass flow Rate		<u> </u>	·				,,	<u> </u>	1	<u>′1 </u>	11.22
1H 1	<u> </u>	0	1 0	0	T) (51,637	51.637	694.98
2 C 6			 							+	
3N 7	0.6528	 	 		·			 		3215,8	
40 8	370.03								· · · · · · · · · · · · · · · · · · ·	971.4	·}
5 Mg 12	22.699	 					+		+	0 0 0	+
6 Al 13	5.5256	+				† -	 	 	 		
7 Si 14	6.4468	-				 		 	 	3	
8P 15	0.78626	!		+		+	1				
9 \$ 16	0.38668	 	 						·	5	
10 Ca 20	6.5406	·		 		• • • • • • • • • • • • • • • • • • • 				3	
11 Ti 22	8.5001	i 			8.5001	·) 1	
12 V 23	0.83782	+									
13 Fe 26	864.89						 			· · · · · · · · · · · · · · · · · · ·	0 0
14 Co 27	0.33513	+	+	+					ļ) (+
15 Ni 28	0.38668						 	 			
16 Cu 29				 		+	9	<u> </u>	-) (
	0.46402									0 (+
17 Zn 30 18 Pb 82	0.52847				}		<u> </u>	+) (
10 FD 02	0.78626	<u>'l</u>	<u> </u>	0.66832	0.78626	<u> </u>	0	<u> </u>	<u>'l</u>) (

Stream Number	25	26	27	28	29	30	31	32	33	34	35
Description				Exhaust for		Fines to CFB		Cooled Top	High H2 Refo		Preheated R
MT/HR SOLIDS	0	0	0	0	1063.6	10.743	0		0	0	n noncatou it
MT/HR AQUEOUS	. 0	0	0	0	D	70.748	ō	0	0	0	0
MT/HR GASEOUS	772.2	101.19	2061.8	2163	0	0	2613.7	2613.7	2340	2340	1567.8
MT/HR TOTAL	772,2	101.19	2061.8	2163	1063.6	10.743	2613.7	2613.7	2340	2340	1567.8
Percent Solids	0	0 0	0	2103	1003.0	100	2013.7	2013.7	2340	2340	1307.0
Sp.Gr.SOLIDS	0	0	0	0	5,1765	5.1765	0				
·	0	0	0	0	5,1765		0		0	0	0
Sp.Gr.AQUEOUS	2.8561E-05	0.0006407	0.001152	0.00035742	0				0	0	4 000007 05
Sp.Gr.GASEOUS	2.8561E-05	0.0006407	0.001152	0.00035742	5,1765		3.2766E-05	4.8963E-05	8.9331E-05	4.3836E-05	4.3836E-05
Sp.Gr.TOTAL	2.6561E-05 675	32				5.1765	3.2766E-05	4.8963E-05	8.9331E-05	4.3836E-05	4.3836E-05
Temperature C Pressure kPa	101,33	1.01E+02	32 1.01E+02	675	650 1.01E+02	650	650	344.62	30	344.62	344.62
Gas nm3/hr				1.01E+02		1.01E+02	1.01E+02	101.33	101.33	1.01E+02	1.01E+02
	7.79E+06	1,41E+05	1.60E+06	1.74E+06	57,070	0.57040	2.36E+07	2.36E+07	2.36E+07	2.36E+07	1.58E+07
Sol/Liq lps	0	0	0	0	57.072	0.57648	0		0		0
Sol/Liq lph	0	0	0	0	2.05E+05	2075.3	0	0	0	0	0
Component Mass Flow							r				
1 Fe2O3 MT/HR	0			0							0
2 Fe3O4 MT/HR	0			0		6,0709	0		· · · · · · · · · · · · · · · · · · ·		
3 FeO MT/HR	0	.		0		3,9018	0		·		0
4 Fe1 MT/HR	0	!			0	ļ			 		0
5 Si102 MT/HR	0	 	 		-		0				0
6 Al2O3 MT/HR	<u></u>		0	0		0.08964	0				
7 P1 MT/HR	0			. 0		0.0067507	0				
8 Cu1 MT/HR	0					0.003984	0	t		 	0
9 Ca1O1 MT/HR	0			0		0.078574	0				0
10 Mg1O1 MT/HR	0			0		0.32315	. 0	 		· · · · · · · · · · · · · · · · · · ·	
11 Ti102 MT/HR	0		ļ			0.12173	· · · · · · · · · · · · · · · · · · ·				
12 S1 MT/HR	0			0			0		 	-	0
13 V1 MT/HR	0			0		0.0071934			<u> </u>		
14 Co1 MT/HR	0		 	0		† -	0		 		
15 Ni1 MT/HR	0		 				0				
16 Zn1 MT/HR	0						 	 			
17 Pb1 MT/HR	0	 				0.0067507	0				
19 H2O MT/HR	0	·					 	 		 	
20 H2O MT/HR	0	 			-			307.31		ļ	
21 N2 MT/HR	0		 	1583.4	0				 -		
22 O2 MT/HR	0			74.666	0						
23 C1H4 MT/HR	0			0		 	 				0
24 C102 MT/HR	0			 							0
25 H2 MT/HR	694.98			ļ				 		}	1411
26 CO MT/HR	77,22	0	0	0	c		232.7	232.7	234	234	156.78
Element Mass flow Rate			· · · · · · · · · · · · · · · · · · ·		T			•	γ- · · ·		
1H 1	694,98	 	0	├──	c	 			-	+	
2 C 6	33.113	}	 		 			 		 	
3 N 7	0								 	 	
40 8	44.107	·		-	 			+	 	-	
5 Mg 12	0	ļ			 	 	 		 		
6 Al 13	C		 	+				1	·		
7 Si 14	C	+	 	+		 				· - ···· ··	
8 P 15	C	 	+			 		 			
9 \$ 16	C			·	 				+		
10 Ca 20				[ļ	
11 Ti 22		 	 	 	+					+	-
12 V 23				 			· C	· · · · · ·) <u> </u>	(0
13 Fe 26			 	1		 	3 () () (0
14 Co 27	C	 		 	 	0.0028773	3 (0
15 Ni 28	C	C	0		0.32868	0.00332	2)) () (0
16 Cu 29	C			0	0,39442	0.003984	() () () 0
17 Zn 30	C					0.0045374	. () () (
18 Pb 82	0	0	0	0	0.66832	0.006751		(0) 0	0

C >t	26	37	20	20	F 0
Stream Number	36		38	39	50
Description			Partially Red		
MT/HR SOLIDS	0	0	10.743	0	821.94
MT/HR AQUEOUS	0	D	0	0	0
MT/HR GASEOUS	1567.8	1809.4	0	2613.7	0
MT/HR TOTAL	1567.8	1809.4	10.743	2613.7	821.94
Percent Solids	0	0	100	0	100
Sp.Gr.SOLIDS	0	0	5.1765	0	6.9179
Sp.Gr.AQUEOUS	0	0	0	0	0
Sp.Gr.GASEOUS	2.8561 E-05	0.00003358	0	3,2766E-05	0
Sp.Gr.TOTAL	2.8561E-05	0.00003358	5,1765	3.2766E-05	6.9179
Temperature C	675	657.59	650	650	660
Pressure kPa	101.33			1.01E+02	
Gas nm3/hr	1.58E+07	1.58E+07	0	2,36E+07	0
 	0	0	0.57648	0	33.004
Sol/Liq lps				···	
Sol/Liq lph	0	0	2075.3	0	1.19E+05
Component Mass Flow					
1 Fe2O3 MT/HR	0	0		0	· · · · · · · · · · · · · · · · · · ·
2 Fe3O4 MT/HR	0	0	6.0709	0	0
3 FeO MT/HR	.0	0	3.9018	0	47.289
4 Fe1 MT/HR	0	0	0	0	698.4
5 Si1O2 MT/HR	0	0	0.11841	0	11.723
6 AI2O3 MT/HR	0	0	0.08964	0	8.8744
7 P1 MT/HR	0	0		-	0.66832
8 Cu1 MT/HR	0	. 0		0	
9 Ca1O1 MT/HR	0	0			
	· · · · · ·				
10 Mg1O1 MT/HR	0	0			
11 Ti102 MT/HR	0			 	
12 S1 MT/HR	0			-	
13 V1 MT/HR	0	C	0.0071934	<u> </u>	0.71214
14 Co1 MT/HR	0		0.0028773	1 0	0.28486
15 Ni1 MT/HR		C	0.00332	0	0.32868
16 Zn1 MT/HR	0	C	0.0045374	0	0.4492
17 Pb1 MT/HR	0	C	0.0067507	0	0.66832
19 H2O MT/HR	C	C	0		0
20 H2O MT/HR	C	272.06	0	307.31	-
21 N2 MT/HR	C				
22 O2 MT/HR	Č	1		ļ <u>.</u>	
23.C1H4 MT/HR		t			
	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
24 C102 MT/HR	C		· · · · · · · · · · · · · · · · · · ·		-
25.H2 MT/HR	1411			_	
26 CO MT/HR	156.78	156.78	3 0	232.7	0
Element Mass flow Rate	es				
1H 1	1411	1411	0	2106	0
2C 6	67.229	67.229	0	100.34	0
3N 7	C		0		0
40 8	89.551	331.16	2.8516	407.32	40.695
5 Mg 12		 			
6 Al 13		+		}	
7 Si 14		 			<u> </u>
		 	 	 	
8P 15		+			
9 \$ 16		 	 	!	
10 Ca 20	ļ		-		+
11 Ti 22	(0.072981		7.2251
12 V 23)	0.0071934	1	0.71214
13 Fe 26	() (7.4258	3 (735.16
14 Co 27			0.0028773		<u> </u>
	1 (+	 	+
15 Ni 28					+
	†) - r	0.003984	,	0.39442
15 Ni 28 16 Cu 29 17 Zn 30	(·	0.003984		

CASE DEFINITION

Title : CIRCORED MODEL

Case :

Data Storage File Name : CIRCORED4.sfw

Mass Balance Option : ON Heat Balance Option : ON Size Analysis Option : ON

Units of Mass Units of Time : metric tonne

: hour

Ambient Air Pressure : 101.325 kPa Standard Pressure : 101.325 kPa

Ambient Air Temperature : 20.00 C Standard Temperature 0.00 C

Plant Site Elevation Plant Site Latitude : 0.00 Degrees 0.00 Meters

COMPONENT DATA

ROW	CNM	CHF				PHC	CMW	SGF		
1	Fe203	Fe203	SI1	159.	6922	5.2400	0.0000	0.0000		
2	Fe304	Fe304	SI1	231.	5386	5.1800	0.0000	0.0000		
3	FeO	Fe0	SI1	71.	8464	5.7000	0.0000	0.0000		
4	Fe1	Fe1	SI1	55.	8470	7.8600	0.0000	0.0000		
5	Si102	Si102	SI1	60.	0848	2.6500	0.0000	0.0000		
		A1203	SI1	101.	9612	3.9650	0.0000	0.0000		
7	P1	P1	SI1	30.	9738	1.8200	0.0000	0.0000		
		Cu1	SI1	63.	5400	8.9200	0.0000	0.0000		
		Ca101	\$I1	56.	0794	3.3100	0.0000	0.0000		
		Mg101	SI1	40.	3114	3.5800	0.0000	0.0000		
		Tī102	SIl	79.	8988	4.2600	0.0000	0.0000		
12		S1	SI1		.0640	2.0000	0.0000	0.0000		
		V1	SI1	50.	9420	5.9600	0.0000	0.0000		
	Co1	Co1	SI1	58.	.9330	8.9000	0.0000	0.0000		
15	Ni1	Ni1	SI1	58,	.7100	8.9000	0.0000	0.0000		
	Znl	Znl	SI1	65.	.3800	7.1400		0.0000		
	Pb1	Pb1	SI1		1900.		0.0000	0.0000		
18	Ca1C103	Ca1C103	SIL	100.	.0894	1.0000	0.0000	0.0000		
19	H2O	H2O	LI3	18.	.0153	1.0000	0.0000	0.0000		
20	H2O	H2O	GC8	18.	.0153	0.0008	0.0000	0.0000		
21	N2	N2	GC8	28.	.0134	0.0012	0.0000	0.0000		
	O2	02	GC8	31.	.9988	0.0014	0.0000	0.0000	•	
	C1H4	C1H4	GC8		.0430	0.0007	0.0000	0.0000		
24	C102	C102	GC8	44.	.0100	0.0020	0.0000	0.0000	e.	
	H2	H2	GC8	2 .	.0159	0.0001	0.0000	0.0000		
26	CO	CO	GC8	28	.0106	0.0012	0.0000	0.0000	:	
ROW	CNM	SOL	A	В		C ·	pH Wi	COV A	вс	
	CNM Fe2O3				0.00		pH Wi 00 0.00000	COV A		0.00000
1	Fe203	0.000	0 0	.00000		000 0.000	00 0.00000	0.00000	0.00000	
1 2		0.000	0 0	.00000	0.00	000.000 000.000	00 0.00000 00 0.00000	0.00000	0.00000	0.00000
1 2 3	Fe2O3 Fe3O4 FeO	0.000 0.000 0.000	0 0 0 0 0 0	.00000	0.00	000 0.000 000 0.000 000 0.000	00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000
1 2 3 4	Fe2O3 Fe3O4	0.000 0.000 0.000	00 0 00 0 00 0	.00000 .00000 .00000	0.000	0.00 0.00 0.00 0.00 0.00 0.00	00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000
1 2 3 4 5	Fe2O3 Fe3O4 FeO Fe1	0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0	.00000	0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6	Fe2O3 Fe3O4 FeO Fe1 Si1O2	0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0 00 0	.00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1	0.000 0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0 00 0	.00000 .00000 .00000 .00000	0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1	0.000 0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0 00 0 00 0	.00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000	000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1	0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0 00 0 00 0 00 0	.00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101	0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0 00 0 00 0 00 0	.00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10	Fe203 Fe304 Fe0 Fe1 Si102 A1203 P1 Cu1 Ca101 Mg101	0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0 00 0 00 0 00 0	.00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000	000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12	Fe203 Fe304 Fe0 Fe1 Si102 A1203 P1 Cu1 Ca101 Mg101 Ti102	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 00 0 00 0 00 0 00 0 00 0 00 0 00	.00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12	Fe203 Fe304 Fe0 Fe1 Si102 A1203 P1 Cu1 Ca101 Mg101 Ti102 S1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe203 Fe304 Fe0 Fe1 Si102 A1203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Fe203 Fe304 Fe0 Fe1 Si102 A1203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Fe203 Fe304 Fe0 Fe1 Si102 A1203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe203 Fe304 Fe0 Fe1 Si102 A1203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 000 000 000 000 000 000 000 000 000	.00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C1O3 H2O H2O N2 O2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C1O3 H2O H2O N2 O2 C1H4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10: H20 H20 N2 O2 C1H4 C102	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C1O3 H2O H2O N2 O2 C1H4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000

COMPONENT DATA

ROW	CNM	CRIT T	CRIT P	CRIT V	ANTOINE	VAPOR PI	RES A B	C HENRY	
1	Fe2O3	0.000	0.0000	0.0000	0.00000	0.000	0.000	0.0	
2	Fe304	0.000	0.0000	0.0000	0.00000	0.000	0.000	0.0	
3	FeO	0.000	0.0000	0.0000	0.00000	0.000	0.000	0.0	
4	Fe1	0.000	0.0000	0.0000	0.00000	0.000	0.000	0.0	
5	Si102	0.000	0.0000	0.0000	0.00000	0.000	0.000	0.0	
6	A1203	0.000	0.0000	0.0000	0.00000	0.000	0.000	0.0	
	P1	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Cu1	0.000	0.0000	0.0000	0.00000	0.000	0.000	0 0	
	Ca101	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Mg101	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Ti102	0.000	0.0000		0.00000	0.000	0.000		
	\$1	0.000	0.0000		0.00000	0.000	0.000	0.0	
	V1	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Co1	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Ni1	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Znl	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Pb1	0.000	0.0000		0.00000	0.000	0.000	0.0	
	Ca1C103	0.000	0.0000		0.00000	0.000	0.000	0.0	
	H2O	0.000	0.0000		0.00000	0.000	0.000	0.0	
	H2O	0.000	0.0000		0.00000	0.000	0.000	0.0	
	N2	0.000	0.0000		0.00000	0.000	0.000		
	02		0.0000		0.00000	0.000	0.000		
	C1H4	0.000	0.0000		0.00000		0.000	0.0	
	C102		0.0000	0.0000	0.00000	0.000	0.000		
	H2	0.000	0.0000	0.0000	0.00000	0.000			
	CO ·			0.0000	6.24020	220.000	0.000	0.0	
40	CO .	133.400	33.4030	22.1000	6.24020	230.270	260.UIU	63426.U	
	CNM	REFEREN		H25	HTE-A	HT	E-B	HTE-C	HTE-D
1	Fe203	B672158	-19	37000	-20749	HT:	E-B 17 -	HTE-C 3.8751	HTE-D 21.9462
1 2	Fe2O3 Fe3O4	B672158 B672160	-19 -26	97000 97300	-20749 -31312	46.15 71.05	17 –		
1 2 3	Fe2O3 Fe3O4 FeO	B672158 B672160 BAK2248	-19 -26 -6	37000	-20749 -31312 8754	46.15 71.05 -8.59	17 - 25 -	3.8751	21.9462
1 2 3 4	Fe2O3 Fe3O4 FeO Fe1	B672158 B672160 BAK2248 B672151	-19 -26 -6	97000 97300	-20749 -31312 8754	46.15 71.05 -8.59	17 25 - 50	3.8751 7.8736	21.9462 32.0732
1 2 3 4 5	Fe2O3 Fe3O4 FeO Fe1 Si1O2	B672158 B672160 BAK2248 B672151 B672387	-19 -26 -6	97000 57300 52382 0 L7720	-20749 -31312 8754 -7903 -8654	46.15 71.05 -8.59 14.09 19.16	17 25 - 50 14 - 51 -	3.8751 7.8736 9.1416	21.9462 32.0732 -21.4692
1 2 3 4 5 6	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3	B672158 B672160 BAK2248 B672151 B672387 B672042	-19 -26 -6 -21	97000 57300 52382 0	-20749 -31312 8754 -7903 -8654 -12425	46.15 71.05 -8.59 14.09 19.16 28.96	17 25 - 50 14 - 51 -	3.8751 7.8736 9.1416 1.3293	21.9462 32.0732 -21.4692 11.6233
1 2 3 4 5 6 7	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1	B672158 B672160 BAK2248 B672151 B672387	-19 -26 -6 -21	97000 57300 52382 0 L7720	-20749 -31312 8754 -7903 -8654 -12425	46.15 71.05 -8.59 14.09 19.16 28.96	17 - 25 - 50 - 51 - 53	3.8751 7.8736 9.1416 1.3293 0.5456	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085
1 2 3 4 5 6 7	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3	B672158 B672160 BAK2248 B672151 B672387 B672042	-19 -26 -6 -21 -40	97000 57300 52382 0 L7720	-20749 -31312 8754 -7903 -8654	46.15 71.05 -8.59 14.09 19.16 28.96	17 25 - 50 14 - 51 - 53 39 -1	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071	21.9462 32.0732 -21.4692 11.6233 8.8977
1 2 3 4 5 6 7 8 9	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282	-19 -26 -6 -21 -40	97000 97300 92382 0 17720 00500	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01	17 25 - 50 14 - 51 - 53 39 -1 56	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694
1 2 3 4 5 6 7 8 9	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129	-19 -26 -6 -2: -40	97000 57300 52382 0 17720 00500 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01	17 - 25 - 50 14 - 51 - 53 39 -1 56 30	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088
1 2 3 4 5 6 7 8 9 10	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672098	-19 -26 -6 -21 -40	97000 57300 52382 0 17720 00500 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01	17 - 25 - 50 14 - 51 - 53 39 -1 56 30	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765
1 2 3 4 5 6 7 8 9 10 11	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672098 B672227	-19 -26 -6 -21 -40 -19 -19 -19	97000 97300 92382 0 17720 00500 0 0 0 17790 43760	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85	17 25 50 14 51 53 39 56 30 81	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762
1 2 3 4 5 6 7 8 9 10 11	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431	-19 -26 -6 -21 -40 -19 -19 -22	37000 57300 52382 0 17720 00500 0 0 51790 43760 25670	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85	17 25 50 14 51 53 39 56 30 81 40 33 5	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084
1 2 3 4 5 6 7 8 9 10 11 12	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B672335	-19 -26 -6 -21 -40 -19 -19 -22	37000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49	17 25 50 14 51 53 39 56 30 81 40 33 5	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440 1.2791	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B672335 B672454	-19 -26 -6 -21 -40 -19 -19 -22	37000 37300 32382 0 17720 00500 0 0 0 13760 25670 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85	17 25 50 14 51 53 39 56 30 81 40 333 5 29	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B672335 B672454 B672113	-19 -26 -6 -21 -40 -19 -14 -22	37000 37300 32382 0 17720 00500 0 0 0 1790 43760 25670 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96	17 25 50 14 51 53 391 56 30 81 40 333 5 29 94	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440 1.2791 0.8444 0.7740	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B672235 B672454 B6722113 B672270 B672480	-19 -26 -6 -21 -40 -19 -14 -22	37000 37300 32382 0 17720 00500 0 0 0 13760 25670 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23 4.74	17 25 50 14 51 53 39 56 30 81 40 333 5 29 94 30	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440 1.2791 0.8444 0.7740 1.6445	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B672335 B672454 B672113 B672270	-19 -26 -6 -21 -40 -11 -14 -22	37000 57300 52382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23 4.74 4.96	17 25 50 14 51 53 39 -1 56 30 81 40 333 5 29 94 30 51	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440 1.2791 0.8444 0.7740 1.6445 1.6774	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B6722335 B672454 B672270 B672480 B672294	-19 -26 -6 -21 -40 -19 -14 -22	37000 57300 52382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23 4.74	17 25 50 14 51 53 39 -1 56 30 81 40 333 5 29 94 30 51	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C1O3	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B6722335 B672454 B672270 B672480 B672294 B677141	-19 -26 -6 -21 -40 -19 -14 -22	37000 37300 32382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23 4.74 4.96 23.83 16.18	17 25 50 14 51 53 39 56 30 81 40 333 5 29 94 30 51 51	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C1O3 H2O	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B6722335 B672454 B672113 B672270 B672480 B672294 B677141 B672180	-19 -26 -6 -21 -40 -1! -14 -22	37000 37300 32382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23 4.74 4.96 23.83 16.18 7.29	17 25 50 14 51 53 39 56 30 81 40 333 5 29 94 30 51 51 48 06	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4600 0.3610 0.6334 61.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B6722454 B672130 B672294 B672130 B672294 B677141 B672180 B672182	-19 -26 -6 -21 -40 -11 -14 -22	37000 37300 32382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403 -2846	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23 4.74 4.96 23.83 16.18 7.29 7.57	17 25 50 14 51 53 39 56 30 81 40 33 5 29 94 30 51 48 06 28	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.52791 0.8444 0.774 3.2146 2.7637 1.3003 0.2525	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672293 B672431 B672431 B672454 B672113 B672480 B672182 B672182	-19 -26 -6 -21 -40 -19 -19 -22	37000 37300 37300 32382 0 17720 0 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403 -2846 -2979	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23 4.74 4.96 23.83 16.18 7.29 7.57	17 25 50 14 51 53 39 56 30 81 40 32 99 43 30 51 48 06 28 96	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.2791 0.8444 0.774 0.8444 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794 1.7697
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C1O3 H2O H2O N2 O2 C1H4	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B67235 B672454 B672113 B672294 B672182 B672182 B672244 B67227 B672214	-19 -26 -6 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	37000 37300 37300 37300 37300 37720 000 000 000 000 000 000 000	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -9999 -3885 -1763 -11445 -1512 -9122 -5071 -2403 -2846 -2979 -6424	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23.83 16.18 7.29 7.57 7.96 11.84	17 25 50 514 553 553 560 570 -	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5249 1.2791 0.8444 0.774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.53504 5.1569 0.0000 0.3596 1.7794 1.7697 8.0422
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2 O2	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B6722454 B672113 B6722480 B672294 B672182 B672182 B672244 B67227 B67227	-19 -26 -6 -21 -40 -11 -14 -22	37000 37300 37300 37300 37300 30500 00 00 01790 00 00 00 00 00 00 00 00 00	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -9999 -3885 -1763 -1445 -1512 -9122 -5071 -2403 -2846 -2979 -6424 -5911	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23.83 16.18 7.29 7.57 7.96 11.84 12.93	17 25 50 514 553 553 560 570 571 -	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5440 1.2791 0.8444 0.7743 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907 0.3891	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.557 -0.3435 -0.3596 1.7794 1.7697 8.0422 6.1869
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1 Mg1O1 Ti1O2 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C1O3 H2O H2O N2 O2 C1H4 C1O2	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B67235 B672454 B672113 B672294 B672182 B672182 B672244 B67227 B672214	-19 -26 -6 -21 -40 -11 -14 -22	37000 37300 37300 37300 37300 37720 000 000 1790 13760 000 000 000 000 000 000 000	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -9999 -3885 -1763 -11445 -1512 -9122 -5071 -2403 -2846 -2979 -6424	46.15 71.05 -8.59 14.09 19.16 28.96 12.92 5.01 12.07 11.80 16.85 -44.41 4.49 7.96 6.23.83 16.18 7.29 7.57 7.96 11.84	17 25 50 514 553 553 560 570 -	3.8751 7.8736 9.1416 1.3293 0.5456 1.0071 1.6659 0.9276 0.4606 0.3610 0.6334 6.5249 1.2791 0.8444 0.774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.53504 5.1569 0.0000 0.3596 1.7794 1.7697 8.0422

COMPONENT DATA

ROW	CNM	TEMP	RANGE oK	HTG-A	HTG-B	HTG-C	HTG-D
1	Fe2O3	298.2	1800.0	-182323	-34.6418	-13.7715	-28.2755
2	Fe304	298.2	1800.0	-243067	-58.6967	-18.9430	-46.8195
3	FeO	298.2	1650.0	-58450	-19.5576	-4.9564	-7.3814
	Fe1	298.2	1811.0	2679	-8.2139	-4.0925	-5.4957
5	Si102	298.2	2000.0	-210342	-16.8483	-6.1496	-14.5464
6	Al203	298.2	2327.0	-386441	-25.8901	-10.0349	-27.6544
7	P1	298.2	317.3	-2534	6.8556	-27.4268	0.0000
8	Cul	298.2	1357.6	1948	-9.4355	-3.1931	-3.6331
9	Ca101	298.2	2000.0	-146099	-14.8629	-4.7096	-10.7418
10	Mg101	298.2	2000.0	-138544	-11.5487	-4.4916	-9.9661
11	Ti102	298.2	2000.0	-217923	-19.7530	-6.5095	-14.7172
12	S1	298.2	388.4	-5700	12.4302	-23.6630	5.4073
13	V1	298.2	2190.0	2969	-9.8550	-2.7412	-5.5855
14	Co1	298.2	1768.0	2071	-8.3546	-3.917 7	-4.1323
15	Nil	298.2	1728.0	3122	-10.1656	-3.1379	-5.8385
16	Znl	298.2	692.7	834	-9.1557	-4.7988	-1.9233
17	Pb1	298.2	600.7	544	-13.9080	-5.5553	-1.5560
18	Ca1C1O3	298.2	1200.0	-283124	-23.3813	-15.1456	-11.0884
19	H2O	298.2	373.2	-70630	-1.0739	-26.4253	0.0000
20	H2O	298.2	2000.0	-54212	-48.4557	-3.8711	-6.7579
21	N2	298.2	3000.0	. 5078	-51.3044	-2.2358	-9.9139
22	02	298.2	3000.0	5395	-54.8302	-2.3535	-10.5960
23	C1H4	298.2	2000.0	-14673	-45.4106	-7.1789	-6.9854
24	C102	298.2	3000.0	-86430	-58 .7 976	-3.7771	-15.3476
25	H2	298.2	3000.0	4863	-36.6465	-2.1036	-9.3536
26	CO	298.0	700.0	-25393	-46.6664	-5.1645	-2.2650

FLOWSHEET DATA

NO	OPR	UNIT PROCESS	IS1	IS2	IS3	IS4	IS5	I\$6	INV	OS1	OS2	OS3	OS4	OS5	OS6
1	SEC	CIRCORED PROCESS	0	0	0	0	0	0	0	0	0	0	0	0	0
2	HPR	LOCK HOPPER	1	2	11	0	0	0	0	3	0	0	0	0	0
3	SPP	VENTURI 1	3	4	0	0	0	0	0	5	6	0	0	0	0
4	SPP	CYCLONE1	6	5	0	0	0	0	0	7	8	0	0	0	0
5	SPS	AIR CLASSIFIER	10	7	0	0	0	0	0	12	11	0	0	. 0	0
6	XIM	COMPRESSOR	13	0	0	0	0	0	0	14	0	0	0	0	0
7	SPP	CALCINER	12	14	0	20	0	0	0	18	19	0	0	0	0
8	SPP	CYCLONE 2	18	19	0	0	0	0	0	15	4	0	0	0	0
9	SPP	CFB STAGE 1	15	25	37	30	0	0	0	29	38	39	0	0	0
10	SPP	RECYCLE CYCLONE	39	38	0	0	0	0	0	30	31	0	0	0	0
11	HTX	PROCESS GAS H/E	31	0	0	33	0	0	0	32	34	0	0	0	0
12	SPS	STREAM SPLITTER	34	0	0	0	0	0	0	35	24	0	0	0	0
13	HTX	PROGAS HEATER 2	35	0	0	21	22	0	0	36	23	0	0	0	0
14	HTX	PROGAS HEATER 1	24	0	0	26	27	0	0	25	28	0	0	0	0
15	SPP	BB STAGE 2	29	36	0	0	0	0	0	50	37	0	0	0	0

				HEAT BA	LANCE S	YAAMMUE	- 10000	00 KCA	L/HOUR	
			INPUT	HEAT	HEAT	ENERGY	HEAT	HEAT	OUTPUT	
	OP	PROCESS STEP	STREAM	REACT	SOLUT	INPUT	LOSS	REQRD	STREAM	TOTAL
-			+	+		+	+	·	+	+
	1	CIRCORED PROCESS	0	0	0	0	0	0	0	0
	2	LOCK HOPPER	14	0	0	0	0	0	-14	0
	3	VENTURI 1	-40	-56	0	0	0	190	-94	0
	4	CYCLONE1	94	0	0	0	0	0	-94	0
	5	AIR CLASSIFIER	82	0	0	0	0	0	-82	0
	6	COMPRESSOR	0	0	0	0	0	0	0	0
	7	CALCINER	70	0	0	. 0	0	170	-239	0
	8	CYCLONE 2	239	0	0	0	-120	0	-120	0
	9	CFB STAGE 1	4913	-39	0	0	0	-107	-4766	0
	10	RECYCLE CYCLONE	4640	0	0	0	0	0	-4640	0
	11	PROCESS GAS H/E	4680	0	0	0	0	0	~4680	0
	12	STREAM SPLITTER	2336	0	0	0	0	0	-2336	0
	13	PROGAS HEATER 2	1577	2458	0	0	0	0	-4032	2
	14	PROGAS HEATER 1	777	1211	0	0	0	0	-1986	1
	7 5	DD CTACE 2	3340	-115	۸	0	٥	٥	-2221	٥

STREAM TEMPERATURES AND ENTHALPIES

	STREAM	TEMP-C	TEMP-F		BTU/HR .	KJ/H
1	Iron Ore to Lockhopper Conveyor Air	32.000	89.60	1455227.0 2369.0	5774809	608867
2	Conveyor Air	32.000	89.60	2369.0	9400	991
3	Iron Ore from Lockhopper Fine Iron Ore from Cyclone 2	72.313	162.16	13750979.0	54568295	5753409
4	Fine Iron Ore from Cyclone 2	-26.000	-14.80	-53567526.0		
	Dried Iron Ore	300.000	572.00		325210290	34288555
6	Moist Air	300.000	572.00	12250507.0	48613940	5125612
7	Coarse Iron Ore	300.000	572.00	81951615.0	325210290 48613940	34288555
8	Moist Air	300.000	572.00	12250507.0	48513940	5125612
9		0.000			108030018	11390147
10	Air for Classifier	32.000	89.60	2369.0	9400	991
	Fines	299.815	571.67	12293098.0	48782953	5143432
12	Coarse Iron Ore Feed	299.815	571.67	69660886.0	276436736	29146114
13	Air to Compressor	32.000	89.60	2369.0	9400	991
	Compressed Air	32.000	89.60	2369.0	9400	991
15	Iron Ore from Cyclone 2	750.000	1382.00	173218033.0	687384708	72474425
16	Feed to CFB	750.000	1382.00	142215195.0	564355503	59502837
	Iron Ore Recycle	750.000	1382.00	47405065.0	564355503 188118501	19834279
	Iron Ore to Cyclone 2		1598.00		947126412 2496755	99860298
	Air to Cyclone 2		1598.00		2496755	263245
	Air to Calciner	32.000	89.60		9400	
	Combustion Air to Heater 2	32.000		9918111.0	39358247	4149737
	Natural gas to Heater 2	32.000			5290933	557849
	Exhaust from Heater 2			809492155.0	3212324474	338691517
	Preheated Reformed gas for CFB				3059452993	322573508
	Reducing gas for CFB			1587444530.0	6299488990	664186791
	Natural gas for Heater 1	32.000			2605756	274737
	Combustion Air for Heater 1			4883594.0	19379667	
	Exhaust for Heater 1			398598647.0	1581767262	
	Partially Reduced Ore		1202.00		500346678	52754065
	Fines to CFB		1202.00	1273588.0	5054007	532869
	Top Gas			4638735895.0	18407991673	
	Cooled Top Gas			2343776800.0	9300857992	980636213
	High H2 Reformed gas makeup		86.00		163935994	17284596
	Preheated Reformed Gas			2336270270.0	9271069675	977495481
	Preheated Reformed Gas for BB			1565301081.0	6211616682	654921972
	Hot Reducing gas for BB			3222993441.0	12789871586	1348500455
	Reducing gas from BB			3150840386.0	12503545126	1318311617
	Partially Reduced Fines Top Gas with Fines		1202.00	1273588.0	5054007	532869
	Natural gas for Reformer			4638735895.0	18407991673	1940847098
	Reformed Gas	32.000		1622269.0 4332245513.0	6437683	678757
	Cold water for Chiller	32.000				
		238.769	461 70	209587.0	831707	
	Calcium Oxide	20 VVV	401.70	14967617.0	59396305	6262451
	Calcium Carbonate	52.000	1022 00	377168.0 33056359.0	1496725 131178235 117960903	157807
	Reformed Gas w/o CO2	500.000	1112 00	29725648.0	117000000	13830780 12437210
	Excess Reformed Gas	600.000	1112.00	0.0	11/960903	1443/410
	DRI	660.000	12200	0.0 82836032.0	328719939	34658595
20	er e) es	000.000	1220.00	02030032.0	320113333	24020333

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

	STREAM	TIME	ACFM	SCFM	M3/HR	NM3/HR
	Conveyor Air	100.0000	511	457	868	777
	Iron Ore from Lockhopper	100.0000	878	737	1491	1252
	Fine Iron Ore from Cyclone 2	100.0000	1202	1326	2042	2253
	Moist Air	100.0000 100.0000 100.0000	150272	71616	255314	121677
8	Moist Air	100.0000	150272	71616	255314	121677
9		100.0000 100.0000	449493	449493	763694	763694
10	Air for Classifier	100.0000	511	457	868	
11	Fines	100 0000	171	0.5	200	162
12	Coarse Iron Ore Feed	100.0000	967	540	1642	917
13	Air to Compressor	100.0000	967 511 511	457	868	777
	Compressed Air	100.0000	511	457	868	777
	Air to Cyclone 2					
	Air to Calciner	100.0000	511	457	868	777
21	Combustion Air to Heater 2	100.0000	2139273			3253496
22	Natural gas to Heater 2	100.0000	188752	168958	320692	287062
	Exhaust from Heater 2		7233548		12289876	3540558
	Preheated Reformed gas for CFB		10368202			
25	Reducing gas for CFB		15913063			
	Natural gas for Heater 1	100.0000	92959	83211	157939	141376
	Combustion Air for Heater 1	100.0000	1053360	942898	1789670	1601994
	Exhaust for Heater 1	100.0000	3561798	1026109	6051533	1743370
31	Top Gas	100.0000	46949943	13891947	79768460	23602568
	Cooled Top Gas	100.0000	31418795	13891947	53380871	23602568
	High H2 Reformed gas makeup	100.0000	15417604	13891947	26194676	23602568
	Preheated Reformed Gas	100.0000	31418795	13891947	53380872	23602568
35	Preheated Reformed Gas for BB	100.0000	21050593	9307605	35765184	15813721
36	Hot Reducing gas for BB	100.0000	32308341	9307605	54892219	15813721
37	Reducing gas from BB	100.0000	31715067	9307605	53884241	15813721
	Top Gas with Fines	100.0000	46949943	13891947	79768460	23602568
4.0	Natural gas for Reformer	100.0000	229662	205578	390198	349279
	Reformed Gas	100.0000	44386805	13885650	75413661	23591869
43	Waste Water from Chiller	100.0000	103277	55113	175469	93637
46	Reformed Gas w/o CO2	100.0000	176116	55095	299223	93607
	VOLUMETRIC FLOW RATE OF	STREAMS WI	TH LIQUIDS	S AND SOL	IDS ONLY	
	STREAM	TIME	USGPM		M3/HR	
	Iron Ore to Lockhopper		1382.480			
	Dried Iron Ore		1329.846			
-	Coarse Iron Ore		1329.846			
	Iron Ore from Cyclone 2		960.814			
	Iron Ore to Cyclone 2		1130.369			
	Partially Reduced Ore	100.0000	904.604			
	Fines to CFB	100.0000	9.137	0.57648	2.0753	
	Partially Reduced Fines		9.137		2.0753	
	DRI		523.121			

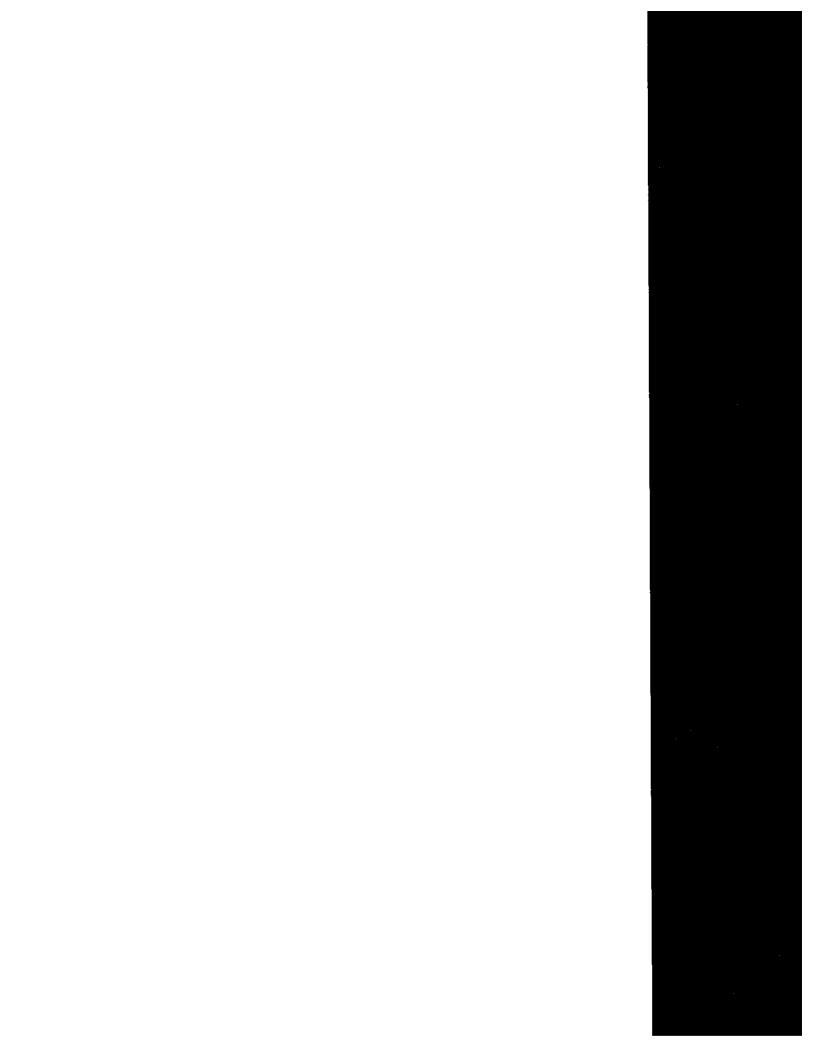
MASS FLOW RATES - MT/HR

	STREAM	MT/HR-SI			
	Iron Ore to Lockhopper	1095.600	95.30000	0.000	1190.900
	Conveyor Air	0.000	0.00000	1.000	1.000
3	Iron Ore from Lockhopper	1323.067	95.30000	1.150	1419.517
4	Fine Iron Ore from Cyclone 2	193.342	0.00000	2.850	196.192
5	Dried Iron Ore	1516.409			1516.409
6	Moist Air	0.000	0.00000	99.300	
7	Coarse Iron Ore	1516.409	0.00000		1516.409
8	Moist Air	0.000		99.300	99.300
9		0.000	0.00000	364.892	364.892
10	Air for Classifier	0.000	0.00000	1.000	
11	Fines	227,461		0.150	227.611
12	Coarse Iron Ore Feed	1288.948	0.00000	0.850	
13	Air to Compressor	0.000	0.00000		1.000
14	Compressed Air	0.000	0.00000	1.000	
	Iron Ore from Cyclone 2	1095.606		0.000	1095.606
	Iron Ore to Cyclone 2	1288.948	0.00000	0.000	1288.948
	Air to Cyclone 2	0.000			2.850
	Air to Calciner	0.000			1.000
	Combustion Air to Heater 2	0.000		4187.266	
	Natural gas to Heater 2	0.000	0.00000		205.467
	Exhaust from Heater 2	0.000		4392.734	
	Preheated Reformed gas for CFB	0.000		772.200	
	Reducing gas for CFB	0.000		772.200	
	Natural gas for Heater 1	0.000		101.192	
	Combustion Air for Heater 1	0.000		2061.774	
	Exhaust for Heater 1	0.000		2162.966	
	Partially Reduced Ore	1063.555			1063.555
	Fines to CFB	10.743			10.743
	Top Gas	0.000		2613.663	
	Cooled Top Gas	0.000		2613.663	
	High H2 Reformed gas makeup	0.000		2340.000	
	Preheated Reformed Gas	0.000		2340.000	
	Preheated Reformed Gas for BB	0.000		1567.800	
	Hot Reducing gas for BB	0.000		1567.800	
	Reducing gas from BB	0.000		1809.413	
	Partially Reduced Fines	10.743			10.743
	Top Gas with Fines	0.000		2613.663	
	Natural gas for Reformer	0.000			250.000
	Reformed Gas	0.000		2817.159	
	Waste Water from Chiller		30.00000		97.000 67.000
	Reformed Gas w/o CO2	0.000		0 000	
50	DRI	821.942	0.00000	0.000	821.942

SPECIFIC GRAVITIES

NO. STREAM	PCS	SG-SI	SG-LI	SG-GC	SG-TC
1 Iron Ore to Lockhopper	91.9976	5.0205	0.9951	0.0000	3.7927
2 Conveyor Air	0.0000	0.0000	0.0000	0.0012	0.0012
3 Iron Ore from Lockhopper	93.2054	5.0205	0.9763	0.0010	0.9519
4 Fine Iron Ore from Cyclone 2	98.5473	5.0205	0.0000	0.0014	0.0961
5 Dried Iron Ore	100.0000	5.0205	0.0000	0.0000	5.0205
6 Moist Air	0.0000	0.0000	0.0000	0.0004	0.0004
7 Coarse Iron Ore	100.0000	5.0205	0.0000	0.0000	5.0205
8 Moist Air	0.0000	0.0000	0.0000	0.0004	0.0004
9	0.0000	0.0000	0.0000	0.0005	0.0005
10 Air for Classifier	0.0000	0.0000	0.0000	0.0012	0.0012
11 Fines	99.9341	5.0205	0.0000	0.0006	0.7855
12 Coarse Iron Ore Feed	99.9341	5.0205	0.0000	0.0006	0.7855
13 Air to Compressor	0.0000	0.0000	0.0000	0.0012	0.0012
14 Compressed Air	0.0000	0.0000	0.0000	0.0012	0.0012
15 Iron Ore from Cyclone 2	100.0000	5.0205	0.0000	0.0000	5.0205
18 Iron Ore to Cyclone 2	100.0000	5.0205	0.0000	0.0000	5.0205
19 Air to Cyclone 2	0.0000	0.0000	0.0000	0.0003	0.0003
20 Air to Calciner	0.0000	0.0000	0.0000	0.0012	0.0012
21 Combustion Air to Heater 2	0.0000	0.0000	0.0000	0.0012	0.0012
22 Natural gas to Heater 2	0.0000	0.0000	0.0000	0.0006	0.0006
23 Exhaust from Heater 2	0.0000	0.0000	0.0000	0.0004	0.0004
24 Preheated Reformed gas for CFB		0.0000	0.0000	0.0000	0.0000
25 Reducing gas for CFB	0.0000	0.0000	0.0000	0.0000	0.0000
26 Natural gas for Heater 1	0.0000	0.0000	0.0000	0.0006	0.0006
27 Combustion Air for Heater 1	0.0000	0.0000	0.0000	0.0012	0.0012
28 Exhaust for Heater 1	0.0000	0.0000	0.0000	0.0004	0.0004
29 Partially Reduced Ore	100.0000	5.1765	0.0000	0.0000	5.1765
30 Fines to CFB	100.0000	5.1765	0.0000	0.0000	5.1765
31 Top Gas	0.0000	0.0000	0.0000	0.0000	0.0000
32 Cooled Top Gas	0.0000	0.0000		0.0000	0.0000
33 High H2 Reformed gas makeup	0.0000	0.0000	0.0000	0.0001	0.0001
34 Preheated Reformed Gas	0.0000	0.0000	0.0000	0.0000	0.0000
35 Preheated Reformed Gas for BB	0.0000	0.0000	0.0000	0.0000	0.0000
36 Hot Reducing gas for BB	0.0000	0.0000	0.0000	0.0000	0.0000
37 Reducing gas from BB	0.0000	0.0000	0.0000	0.0000	0.0000
38 Partially Reduced Fines	100.0000	5.1765	0.0000	0.0000	5.1765
39 Top Gas with Fines	0.0000	0.0000	0.0000	0.0000	0.0000
40 Natural gas for Reformer	0.0000	0.0000		0.0000	0.0000
41 Reformed Gas	0.0000	0.0000		0.0004	0.0006
43 Waste Water from Chiller	0.0000	0.0000	0.0000	0.0004	0.0008
46 Reformed Gas w/o CO2	100.0000	6.9179	0.0000	0.0002	6.9179
50 DRI	100.000	0.1112	0.0000	0.0000	0.31/3

SOLIDS - MT/HR NO. STREAM	Fe203	Fe304	FeO	Fe1	Si102
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore 7 Coarse Iron Ore 11 Fines 12 Coarse Iron Ore Feed 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 30 Fines to CFB 38 Partially Reduced Fines 50 DRI	101.124 122.119 17.845 139.965 20.995 118.970 101.124 83.025 27.675 118.970 0.000 0.000	918.22 1108.86 162.04 1270.90 1270.90 190.64 1080.27	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 386.277 3.902 3.902	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	11.7229 14.1568 2.0688 16.2256 16.2256 2.4338 13.7917 11.7230 9.6248 3.2083 13.7917 11.7230 0.1184 0.1184
SOLIDS - MT/HR NO. STREAM	Al203	P1	Cu1	Ca101	Mg101
<pre>1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore</pre>	8.8744 10.7168 1.5661 12.2829	0.66832 0.80707 0.11794 0.92501	0.39442 0.47630 0.06960 0.54591 0.54591	7.779 9.394 1.373 10.767	31.9915 38.6335 5.6456 44.2792
SOLIDS - MT/HR NO. STREAM	Ti102	\$1 +	V1	Co1	Ni1
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore 7 Coarse Iron Ore 11 Fines 12 Coarse Iron Ore Feed 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 30 Fines to CFB 38 Partially Reduced Fines 50 DRI	12.0516 14.5537 2.1268 16.6805 16.6805 2.5021 14.1784 12.0517 9.8946 3.2982 14.1784 12.0517 0.1217 0.1217	0.32868 0.39692 0.05800 0.45492 0.45492 0.06824 0.38668 0.26985 0.08995 0.38668 0.32868 0.00332 0.00332	0.71214 0.85999 0.12567 0.98567 0.98567 0.14785 0.83782 0.71214 0.58468 0.19489 0.83782 0.71214 0.00719	0.28486 0.34400 0.05027 0.39427 0.05914 0.33513 0.28486 0.23387 0.07796 0.33513 0.28486 0.00288	0.32868 0.39692 0.05800 0.45492 0.45492 0.06824 0.38668


SOLIDS - MT/HR NO. STREAM	Zn1	Pb1	Ca1C1O3		
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore 7 Coarse Iron Ore 11 Fines 12 Coarse Iron Ore Feed 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 30 Fines to CFB 38 Partially Reduced Fines 50 DRI	0.44920 0.54246 0.07927 0.62173	0.66832 0.80707 0.11794 0.92501	0.00000 0.00000 0.00000		
SOLIDS - WEIGHT PERCENT NO. STREAM	Fe203	Fe304	FeO	Fe1	Si102
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore 7 Coarse Iron Ore 11 Fines 12 Coarse Iron Ore Feed 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 30 Fines to CFB 38 Partially Reduced Fines 50 DRI	9.23000 9.23000 9.23000 9.23000 9.23000 9.23000 9.23000 9.23000 9.23000 9.23000 0.00000 0.00000	83.8100 83.8100 83.8100 83.8100 83.8100 83.8100 83.8100 83.8100 83.8100 83.8100 856.5108 56.5108 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 36.3194 36.3194 5.7533	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.07000 1.07000 1.07000 1.07000 1.07000 1.07000 1.07000 1.07000 1.07000 1.07000 1.10224 1.10224 1.10224 1.42625
SOLIDS - WEIGHT PERCENT NO. STREAM	A1203	P1	Cu1	Ca101	Mg101
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore 7 Coarse Iron Ore 11 Fines 12 Coarse Iron Ore Feed 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 30 Fines to CFB 38 Partially Reduced Fines 44 Calcium Oxide 45 Calcium Carbonate 50 DRI	0.81000 0.81000 0.81000 0.81000 0.81000 0.81000 0.81000 0.81000 0.81000 0.81000 0.83441 0.83441 0.00000 0.00000	0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06284 0.06284 0.06284 0.00000 0.00000	0.03600 0.03600 0.03600 0.03600	0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.731 0.731 0.731 100.000	2.92000 2.92000 2.92000 2.92000 2.92000 2.92000 2.92000 2.92000 2.92000 2.92000 3.00799 3.00799 0.00000

SOLIDS - WEIGHT PERCENT NO. STREAM	Ti102	S1	V1	Co1	Ni1
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore 7 Coarse Iron Ore 11 Fines 12 Coarse Iron Ore Feed 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 30 Fines to CFB 38 Partially Reduced Fines 50 DRI	1.10000 1.10000 1.10000 1.10000 1.10000	0.03000 0.03000 0.03000 0.03000 0.03000	0.06500 0.06500 0.06500 0.06500 0.06500	0.02600 0.02600 0.02600 0.02600 0.02600	0.03000 0.03000 0.03000 0.03000 0.03000
SOLIDS - WEIGHT PERCENT NO. STREAM	Zn1	Pb1	Ca1C103		
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 4 Fine Iron Ore from Cyclone 2 5 Dried Iron Ore 7 Coarse Iron Ore 11 Fines 12 Coarse Iron Ore Feed 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 30 Fines to CFB 38 Partially Reduced Fines 50 DRI	0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04224	0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06100 0.06284 0.06284	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000		
AQUEOUS - MT/HR NO. STREAM	H2O			\	
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 42 Cold water for Chiller 43 Waste Water from Chiller	95.3000 95.3000 30.0000 30.0000				
AQUEOUS - WEIGHT PERCENT NO. STREAM	H2O				
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 42 Cold water for Chiller 43 Waste Water from Chiller	100.000 100.000 100.000 100.000				
AQUEOUS - GRAMS PER LITER NO. STREAM	H2O				
1 Iron Ore to Lockhopper 3 Iron Ore from Lockhopper 42 Cold water for Chiller 43 Waste Water from Chiller	995.067 976.314 995.067 815.430				

NO.	EOUS - MT/HR STREAM +			02	C1H4	C102
2 3 4 6 8	Conveyor Air Iron Ore from Lockhopper Fine Iron Ore from Cyclone 2 Moist Air Moist Air	0.000 0.000 0.000 95.300 95.300 38.786	0.77 0.88 2.19 3.07 3.07 0.00	0.232 0.267 0.661 0.928 0.928 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 274.324
10 11 12 13 14 19	Air for Classifier Fines Coarse Iron Ore Feed Air to Compressor Compressed Air Air to Cyclone 2 Air to Calciner	0.000 0.000 0.000 0.000 0.000	0.77 0.12 0.65 0.77 0.77 2.19	0.232 0.035 0.197 0.232 0.232 0.661 0.232	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
21 22 23 26 27 28	Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Natural gas for Heater 1 Combustion Air for Heater 1 Exhaust for Heater 1	0.000 0.000 461.454 0.000 0.000 227.264	3215.82 0.00 3215.82 0.00 1583.44 1583.44	971.446 0.000 151.812 0.000 478.332 74.666	0.000 205.467 0.000 101.192 0.000 0.000	0.000 0.000 563.647 0.000 0.000 277.593
31 32 37 39 40 41 43	Conveyor Air Iron Ore from Lockhopper Fine Iron Ore from Cyclone 2 Moist Air Moist Air Air for Classifier Fines Coarse Iron Ore Feed Air to Compressor Compressed Air Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Natural gas for Heater 1 Combustion Air for Heater 1 Exhaust for Heater 1 Top Gas Cooled Top Gas Reducing gas from BB Top Gas with Fines Natural gas for Reformer Reformed Gas Waste Water from Chiller Reformed Gas w/o CO2	307.312 307.312 272.056 307.312 0.000 400.136 0.000	0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 250.000 378.829 67.000	2.036 0.000 2.036 0.000 0.763 0.000
	Reformed Gas w/o CO2 EOUS - MT/HR STREAM .+			0.000	67.000	0.000
9 24 25 31 32 33 34 35 36 37	Preheated Reformed gas for CFB Reducing gas for CFB Top Gas Cooled Top Gas High H2 Reformed gas makeup Preheated Reformed Gas Freheated Reformed Gas for BB Hot Reducing gas for BB Reducing gas from BB Top Gas with Fines		0.000 77.220 77.220 232.704 232.704 234.000 234.000 156.780 156.780 232.704			

NO.	EOUS - WEIGHT PERCENT STREAM	H2O		02		C102
2 3 4 6 8 9 10 11 12 13 14 19 20 21 22 23 26 27 28 31	Conveyor Air Iron Ore from Lockhopper Fine Iron Ore from Cyclone 2 Moist Air Moist Air Air for Classifier Fines Coarse Iron Ore Feed Air to Compressor Compressed Air Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Natural gas for Heater 1 Combustion Air for Heater 1 Exhaust for Heater 1 Top Gas	0.0000 0.0000 95.9718 95.9718 10.6295 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.5049 0.0000 10.5070 11.7579	76.8000 76.8000 3.0937 3.0937 0.0000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000 76.8000	23.2000 23.2000 0.9345 0.9345 0.0000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000 23.2000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 75.1796 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.8313 0.0000 12.8339 0.0779
43 46 GAS	Reducing gas from BB Top Gas with Fines Natural gas for Reformer Reformed Gas Waste Water from Chiller Reformed Gas w/o CO2 EOUS - WEIGHT PERCENT STREAM	0.0000 0.0000	0.0000 0.0000		100.000	0.0000
9 24 25 31 32 33 34 35 37	Preheated Reformed gas for CFB Reducing gas for CFB Top Gas Cooled Top Gas High H2 Reformed gas makeup Preheated Reformed Gas Freheated Reformed Gas for BB Hot Reducing gas for BB	14.1909 90.0000 79.2608 79.2608 90.0000 90.0000 90.0000 76.2997 79.2608	0.0000 10.0000 10.0000 8.9034 8.9034 10.0000 10.0000 10.0000			

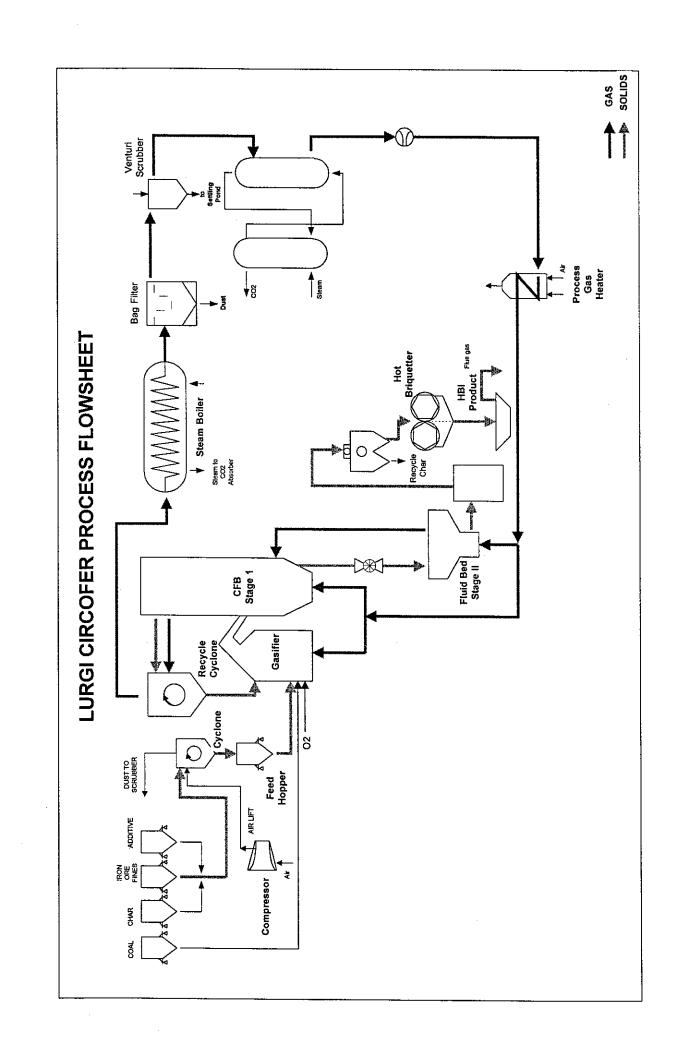
NO.	COUS - VOLUME PERCENT STREAM			02	ı	
	Conveyor Air Iron Ore from Lockhopper Fine Iron Ore from Cyclone 2 Moist Air Moist Air Air for Classifier Fines	0.0000	79.0852	20.9148	0.000	0.0000
3	Tron Ore from Lockhopper	0.0000	79.0852	20.9148	0.000	0.0000
4	Fine Tron Ore from Cyclone 2	0.0000	79.0852	20.9148	0.000	0.0000
6	Moist Air	97.4457	2.0201	0.5342	0.000	0.0000
8	Moist Air	97.4457	2.0201	0.5342	0.000	0.0000
9	110100	6.3188	0.0000	0.0000	0.000	18.2942
10	Air for Classifier	0.0000	79.0852	20.9148	0.000	0.0000
11	Fines	0.0000	79.0852	20.9148	0.000	0.0000
12	Coarse Iron Ore Feed	0.0000	79.0852	20.9148	0.000	0.0000
13	Air to Compressor	0.0000	79.0852	20.9148	0.000	0.0000
14	Compressed Air	0.0000	79.0852	20.9148	0.000	0.0000
19	Fines Coarse Iron Ore Feed Air to Compressor Compressed Air Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2	0.0000	79.0852	20.9148	0.000	0.0000
20	Air to Calciner	0.0000	79.0852	20.9148	0.000	0.0000
21	Combustion Air to Heater 2	0.0000	79.0852	20.9148	0.000	0.0000
22	Natural gas to Heater 2	0.0000	0.0000	0.0000	100.000	0.0000
23	Exhaust from Heater 2	16.2156	72.6731	3.0034	0.000	8.1078
26	Natural gas for Heater 1	0.0000	0.0000	0.0000	100.000	0.0000
27	Combustion Air for Heater 1	0.0000	79.0852	20.9148	0.000	0.0000
28	Exhaust for Heater 1	16.2188	72.6719	3.0000	0.000	8.1094
31	Exhaust from Heater 2 Natural gas for Heater 1 Combustion Air for Heater 1 Exhaust for Heater 1 Top Gas Cooled Top Gas Reducing gas from BB Top Gas with Fines Natural gas for Reformer	1.6199	0.0000	0.0000	0.000	0.0044
32	Cooled Top Gas	1.6199	0.0000	0.0000	0.000	0.0044
37	Reducing gas from BB	2.1404	0.0000	0.0000	0.000	0.0000
39	Top Gas with Fines	1.6199	0.0000	0.0000	0.000	0.0044
4 (Natural gas for Reformer	0.0000	0.0000	0.0000	100.000	0.0000
41	Reformed Gas	2.1102	0.0000	0.0000	2.243	0.0016
4.3	Waste Water from Chiller	0.0000	0.0000	0.0000	100.000	0.0000
4 6	Natural gas for Reformer Reformed Gas Waste Water from Chiller Reformed Gas w/o CO2	0.0000	0.0000	0.0000	100.000	0.0000
GAS	SEOUS - VOLUME PERCENT	***				
NO.	. stream -+	H2 	CC -+	•		
	9	75.3870	0.00000			
	•					
21	Reducing gas for CFB	99,2067	0.79333	,		
3.	1 Top Gas	97.5867	0.78894			
3	Cooled Top Gas	97.5867	0.78894	Į		
3.	3 High H2 Reformed gas makeup	99.2067	0.79333	3		
3.	A Preheated Reformed Gas	99.2067	0.79333	3		
3	5 Preheated Reformed Gas for BB	99.2067	0.79333	3		
2	4 Preheated Reformed gas for CFB 5 Reducing gas for CFB 1 Top Gas 2 Cooled Top Gas 3 High H2 Reformed gas makeup 4 Preheated Reformed Gas 5 Preheated Reformed Gas for BB 6 Reducing gas for BB 9 Top Gas with Fines	99.2067	0.79333	3		
3	7 Reducing gas from BB	97.0662	0.79333	3		
3	7 Reducing gas from BB 9 Top Gas with Fines	97.5867	7 0.78894	1		*
	1 Reformed Gas	97.5867 95.6156	0.02913	Ļ		
- 7	# *·*- ****** * ***					

APPENDIX E-7:

CIRCOFER FLUID-BED REDUCTION PROCESS (COAL REDUCTANT)

CIRCOFER PROCESS

PROCESS BACKGROUND:


The Circofer process is a two stage fluidized bed process that uses iron ore fines and a solid carbon source such as coal to produce reducing gas. Reduction is carried out at high reduction temperatures. The process produces hot briquetted iron, HBI.


PROCESS DESCRIPTION:

The iron oxide feed to the Circofer process is in the form of iron fines between 1mm and 0.03mm in size. The coal to be used as the energy source and reductant must have an ash softening temperature above 1500C due to operating temperature of the gasifying process. The fines, lime and char are first preheated by the hot exhaust gases. These then enter the gasifier, where O2 is injected and coal is fed in from the charge hopper. The gasifier operates at about 1000C and at these conditions, the O2 partially combusts the carbon contained in the coal, producing heat and a CO/CO2 gas mixture. The heat produced in the gasifier heats the ore and char to process temperatures. In the CFB, the ore fines are reduced to about 70% metallization. The fluidizing gas in the CFB is a mixture of heated recycle gas which enters the lower part of the CFB, and the offgas from the second reducer (FB) which enters further up in the CFB. The fines and char are carried out of the CFB due to the high gas velocity in the reactor, are captured by the cyclone, and returned to the CFB via the gasifier. Thus a circulation pattern is set up which allows the heat to be transferred to the CFB reactor.

Reduced solids from the CFB enter the FB reactor, which is a conventional bubbling bed. In this second reduction stage, the fines reach a final metallization of 92 to 93%. The gas leaving the top of the FB passes on to the CFB. The product from the second reducer is partially cooled, the char and ash are removed by magnetic separation, and the product is briquetted and cooled.

PROCESS ADVANTAGES
Direct use of low cost iron ore fines
Proven fluid bed technology
High quality product

Circofer Process --- MetSim Model --- Description

The MetSim model for this process is largely based upon information from Lurgi. This process is at the pilot-plant development stage. Hence, only conceptual information is available.

Flowsheet Description

In this process, the Iron Ore Fines (Stream 1) along with Char (Stream 2) and Additive (Stream 3) enter into the Lockhopper and move towards Venturi 1 along with a recycle stream (Stream 11) where moisture from the ore fines is absorbed by the recycle gases as Stream 6. Stream 5, containing dried iron ore fines is separated as Stream 7 in Cyclone 1 from gases, Stream 8. The stream 7 along with top gas (Stream 30) and reduced solid particles (Stream 31) from CFB passes through Venturi 2 where solids are separated from gases and sent forward to the Gasifier. In the Gasifier, Coal (Stream 9) and Oxygen (Stream 10) are injected. The heat produced in the Gasifier by the reaction between Coal and Oxygen heats the ore and char to 1000C. The combined ore and gases (Stream 18) enters into the CFB Stage 1 where hot gases from BB Stage 2 (Stream 37) and fresh reducing gases from Process Gas Heater (Stream 43) are also injected. Here, partial reduction of iron ore takes place and the partially reduced ore (Stream 29) is sent to the Bubbling Bed Stage 2 reactor. Very fine iron ore (Stream 38) gets entrapped in the outgoing top gas (Stream 39). The Recycle Cyclone separates solid particles from the gas and recycles them back to Ventui 2 as Stream 30. Stream 31, Top gas is also sent to the Venturi 2, Venturi 1 and then finally it comes out as Stream 8 from the Cyclone 1. It is then cooled by using a steam boiler to about 220C. The cooled gas (Stream 36) is then passed through a Dust Separator to remove dust if any. Then it is stripped of water and CO2 and preheated. The preheating is done in a Process Gas Heater by burning natural gas with air. Then this hot stream at 750C is divided into three parts to be used in two reducing reactors (Streams 42 and 43) and the gasifier (Stream 44). Final reduction takes place in the BB Stage 2 reactor. Stream 50 is the final reduced iron or called Direct Reduced Iron containing char and all slag. It is passed through a Hot Magnetic Separator for separation of DRI (Stream 47) from char and slag (Stream 48).

Model Assumptions:

Cyclone 1: 100% efficiency is assumed.

Gasifier: No reduction of ore in the gasifier is assumed. The output temperature is 1000C.

CFB Stage 1: Partial reduction takes place in this reactor.

Recycle Cyclone: 100% efficiency is assumed.

Process Gas Heat Exchanger: 100% efficient; No heat losses are assumed. Both outlet temperatures are same.

BB Stage 2: 95% reduction of FeO to Fe takes place. No carry over of particles in top gas is assumed.

Results

Since not much information is available in terms of operation data, it was decided to achieve same operating conditions as were outlined by Lurgi in their articles. Assumptions were made about the composition of the ore fines, reduced ore, ash coal and char, etc. The model results are qualitatively close to the those provided by Lurgi.

Stream Number					r						
	Iron Ore to L	Char 2	Additive 3		Dried Iron Or	top gas from		8	9	10	11
MT/HR SOLIDS	1095.6	200	50		1345.6	top gas from		Top Gas to S		Oxygen	Top gas recy
MT/HR AQUEOUS	95.3	0			1345,0	0		0	200	0	
MT/HR GASEOUS	0.0	0	·			13204	0	13204	0	0	0
MT/HR TOTAL	1190.9	200	50	*******	1345,6	13204	1345.6	13204	200	190 190	13109
Percent Solids	91.998	100	100		100	13204	100	13204	100		13109
Sp.Gr.SOLIDS	5.0205	2.1034	3.31	4.0973	4.0973	0		0	1.232	0	- 0
Sp.Gr.AQUEOUS	0.99507	0		***************************************	4.0370	0	4.0873		1.232 D	0	0
Sp.Gr.GASEOUS	0	0				0.00060097	0		0	0.0012779	0.00032591
Sp.Gr.TOTAL	3.7927	2.1034	3.31	3.3969	4.0973	0.00060097	4.0973	0.00060097	1.232	0.0012779	0.00032591
Temperature C	32	32	25		300	300	300	300	25	32	
Pressure kPa	101.33	101.33	101.33		101.33	101.33	101,33	101.33	101,33	101,33	788.05 101.33
Gas nm3/hr	0	0				1.05E+07	101,33		101.33	1.33E+05	1.04E+07
Sal/Liq lps	87.221	26.412	4.196		91.226	1.00E /01		1.032+07	45.093	1,335+05	
Sal/Liq lph	3.14E+05	95083	15106	4.24E+05	3.28E+05	0		0	1.62E+05	0	0
Sol/Liq m3/hr	314	95,083	15.106			0		0		0	0
Component Mass Flow	/ Rates			12.1.10	040,41	<u> </u>	020,41				
1 Fe2O3 MT/HR	101.12	-4.44E-14	2.78E-14	101.12	101.12	Ö	101.12	0		0	.0
2 Fe3O4 MT/HR	918.22	0		 	918.22	0		0		0	0
3 FeO MT/HR	0	0		+		0		<u> </u>		0	0
4 Fe1 MT/HR	0	0		 		0		0	0	0	0
5 Si1O2 MT/HR	11.723	19			30.723	0		0	12,4	0	0.0
6 Al2O3 MT/HR	8.8744	0			8.8744	0		0	0	0	0
7 P1 MT/HR	0.66832	0	0	0.66832	0.66832	ŏ	 	ō	0	0	0
8 Cu1 MT/HR	0.39442	0	0	0.39442	0.39442	0		0	0	0	0
9 Ca1O1 MT/HR	7.7788	0	50	57.779	57.779	-		0	. 0	0	0
10 Mg1O1 MT/HR	31.992	٥	0	31.992	31,992	0		0	ō	0	0
11 Ti102 MT/HR	12.052	0	0	12.052	12.052	0		0	0	0	0
12 \$1 MT/HR	0.32868	0	0	0.32868	0.32868	0		0	0	0	0
13 V1 MT/HR	0.71214	0	0	0.71214	0.71214	0		0	0	0	0
14 Co1 MT/HR	0.28486	0	0	0.28486	0.28486	0	0.28486	0	0	0	0
15 Ni1 MT/HR	0.32868	0	0	0.32868	0.32868	0	0.32868	0	0	0	0
16 Zn1 MT/HR	0.4492	0	0	0.4492	0.4492	0	0.4492	0	0	0	0
17 Pb1 MT/HR	0.66832	D		0.66832	0.66832	0	0.66832	0	0	0	0
19 H2O MT/HR	95,3	0	Ō	95.3	0	0	0	0	0	Ð	0
20 H2O MT/HR	0	0	0	0	0	190,6	0	190.6	0	2.11E-14	95.3
21 N2 MT/HR	. 0	0	0	0	0	0	0	Ö	0	0	0
22 O2 MT/HR	.0	0	0	0	0	0	0	Ō	0	190	0
23 C1H4 MT/HR	0	D		0	0	67	0	67	. 0	0	67
24 C102 MT/HR	0	0			0	760.37	0	760.37	0	0	760.37
26 CO MT/HR	0		0	0	0	12186	0	12186	Ö	0	12186
27 C MT/HR	0	173.6	<u> </u>		173.6	0	173.6	0	114	0	0
28 C5H8 MT/HR	0	7.4		7,4	7.4	0	7.4	0	73.6	0	0
Element Mass Flow Ra											
1H 1	10.564					38.167	0.87599	38.167	8.7125	2.36E-15	27.502
2C 6	0					5483,1	180.12	5483.1	178.89	0	5483.1
3N 7	0		-	+		0	С	0	0	0	0
40 8	398.99					7682.6		7682.6	6.6038	190	7598
5 Mg 12	19,294	0			19.294	0		0		0	0
6 AJ 13	4.6968				4.6968			0		0	0
7 Si 14	5.4798		 	 	14.361			0	5.7962	0	0
8 P 15	0.66832	0			0.66832	0		0		0	0
98 16	0.32868	0	ŧ		0.32868	 	· · · · · · · · · · · · · · · · · · ·	0	 	0	0
10 Ca 20	5.5595	 	1		-					0	0
11 Ti 22	7.225	0			7.225					0	0
12 V 23	0.71214		}			0		0		0	0
13 Fe 26	735.15		-							0	0
14 Co 27	0.28486								···	0	0
15 Ni 28	0.32868							0	0	0	0
16 Cu 29	0.39442		 			0	0.39442	0	0	0	0
17 Zn 30	0.4492	0			0.4492	0		0		0	0
18 Pb 82	0,66832		1 0	0.66832	0.66832	0	0.66832	0	0		0

CIRCOFER PROCESS --- STREAM SUMMARY

Stream Number	12	18	25	26	27	28	29	30	31	32	20
Description			Reducing ga		Combustion	Exhaust for	Partially Red		Recycle solid		33 Clean cool to
MT/HR SOLIDS	1359.5	1416.8	0	0	0	D	1371.3	10p gas 0	13.852	Dust	CIBSIT COOL TO
MT/HR AQUEOUS	0	0	0	0		0	0	0	0.002	0	
MT/HR GASEOUS	0	4533.6	12356	232.32	4733.5	4965.9	0	12962	0	0	13204
MT/HR TOTAL	1359.5	5950.4	12356	232.32	4733.5	4965,9	1371.3	12962	13.852	0	13204
Percent Solids	100	23,81	0.		0	0		0	100	0	0
Sp.Gr.SOLIDS	4.0873	3.2831	0	0	. 0	0		0	3.3063	0	0
Sp.Gr.AQUEOUS	0	0	0	0	0	0			0	0	- 0
Sp.Gr.GASEOUS	0	0.00026606	0.00033087	0.0006407	0.001152	0.00033122	0	0.00031304	0	0	0.00069852
Sp.Gr.TOTAL	4.0873	0.0003492	0.00033087	0.0006407	0.001152	0.00033122	3,3063	0.00031304	3,3063	0	
Temperature C	788.05	1000	750	32	32	750	950	831.83	831.83	220	220
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33
Gas nm3/hr	0	3.66E+06	9.97E+06	3,25E+05	3.68E+06	4.00E+06	0	1.02E+07	0	D	1.05E+07
Sol/Liq lps	92.39	119,87	0	0	D	0	115.21	C	1.1638	Ö	0
Sol/Liq lph	3.33E+05	4.32E+05	0	0	. 0	0		О	4189.6	0	C
Sol/Liq m3/hr	332.6	431.54	0	0		0		0	4.1896	0	0
Component Mass Flow	v Rates		·	***************************************				·		. <u> </u>	
1 Fe2O3 MT/HR	101.12	101.12	0	0	0	0	0	0	0	0	0
2 Fe3O4 MT/HR	924.35	924,35	0		0	0		. 0	6.1326	o	0
3 FeO MT/HR	3.8443	3.8443	0		0			0	3.8443	0	0
4 Fe1 MT/HR	0	0	0		ō	0	0	0	0.04-0	0	0
5 Si1O2 MT/HR	31.159	43.559	D		0	0		0	0.43559	0	0
6 AI2O3 MT/HR	8.964	8,964	D		0	0	 	0		0	0
7 P1 MT/HR	0.67507	0.67507	. 0	0				0		0	0
8 Cu1 MT/HR	0.3984	0.3984	0	0	0	0	 	0	0.003984	0	0.
9 Ca1O1 MT/HR	58,362	58.362	0	0	0	0	57,779	- 0		0	0
10 Mg1O1 MT/HR	32.315	32.315	0	0	O	0	31.992	0	0.32315	0	0
11 Ti102 MT/HR	12.173	12.173	0	0	0	0	12.052	0	0,12173	0	0
12 S1 MT/HR	0.332	0.332	0	0	0	0	0.32868	0	0.00332	0	0
13 V1 MT/HR	0.71933	0.71933	0	0	0	0	0.71214	0	0.0071933	o	0
14 Co1 MT/HR	0.28773	0.28773	0	. 0	0	0	0.28486	0	0.0028773	0	0
15 Ni1 MT/HR	0.332	0.332	0	. 0	0	0	0.32868	0	0.00332	ol	0
16 Zn1 MT/HR	0.45373	0,45373	0	0	0	0	0.4492	0	0.0045373	0	С
17 Pb1 MT/HR	0.67507	0.67507	0	0	0	0	0.66832	0	0.0067507	0	0
19 H2O MT/HR	0	0	0	0	0	0	0	0	0	0	0
20 H2O MT/HR	С	32.402	95.3	Ö	0	521.76	0	95.3	0	О	190,6
21 N2 MT/HR	0	0	0	0	3635.4	3635,4	0	0	0	0	0
22 O2 MT/HR	О		0	0	1098.2	171.42	0	. 0	0	0	0
23 C1H4 MT/HR	0	22,78	. 67	232.32	0	0	G	67	0	0	67
24 C102 MT/HR	0	2,5853	7.6037	0	.0	637.31	0	760.37	0	0	760.37
26 CO MT/HR	0	4475.8	12186	0	0	0	0	12039	0	0	12186
27 C MT/HR	175.06	146.43	0	0	. 0	0	144.96	0	1.4643	0	0
28 C5H8 MT/HR	8.2182	81.818	0	0	٥	0	81	0	0.81818	0	0
Element Mass Flow R				· ·							
1H 1	0.97284				0	· · · · · · · · · · · · · · · · · · ·	9.5885	27,502	0.096854	0	38.167
2C 6	182.31	2155.6	5277.6		0	173.93	216.37	5420.3	2.1856	0	5483,1
3N 7	0					3635,4	0	ס	0	О	0
40 8	341.91	2935.7	7050.6			1098.2	313,72	7514.3	3.1688	0	7682.6
5 Mg 12	19.489	19.489	0			0	19.294	0	0.19489	0	Ō
6 Al 13	4.7442	4.7442	0					0	0.047442	0	0
7 Si 14	14.565	20.361	0			 -	20.157	0	0.20361	0	0
8 P 15	0.67507	0.67507	0					. 0	0.0067507	0	0
9 \$ 16	0.332	0.332	0							0	0
10 Ca 20	41.712									·	0
11 Ti 22	7.298	7.298	0						0.07298	0	0
12 V 23	0.71933		·		 		0.71214	0	0.0071933	0	0
13 Fe 26	742.58	 					735.15	0	7.4258	0	0
14 Co 27	0.28773	0.28773					0.28486	0	0:0028773	0	0
15 Ni 28	0.332	· · · · · · · · · · · · · · · · · · ·	0			0	0.32868	0	0.00332	О	0
16 Cu 29	0.3984	0.3984	0			0	0.39442	0	D.003984	0	0
17 Zn 30	0.45373	0.45373	0		0	0	0.4492	0	0.0045373	0	0
18 Pb 82	0.67507	0.67507	0	0	0	0	0.66832	0	0.0067507		

CIRCOFER PROCESS --- STREAM SUMMARY

					 ,	·,					
Stream Number	34	36	37	38	39	40	41	42	43	44	45
Description					Top Gas with		Cold Recycle	Recycle gas f	Recycle gas f	Recycle gas f	Water
MT/HR SOLIDS	0	0	0	13.852	0	0	0	0	0	0	0
MT/HR AQUEOUS	0	0	0	0	0	0	0	0	0	0	1379,8
MT/HR GASEOUS	13109	13204	4319.4	0	12962	752.77	12356	4077.4	4077.4	4201	0
MT/HR TOTAL	13109	13204	4319.4	13.852	12962	752.77	12356	4077.4	4077.4	4201	1379.8
Percent Solids	0	0	0	100	0	0	0	0	. 0	0	0
Sp.Gr.SOLIDS	0	0	0	3.3063	0	0	0	0	0	0	. 0
Sp.Gr.AQUEOUS	0	0	0	0	0	0	0	0	0	. 0	0.99712
Sp.Gr.GASEOUS	0.00068356	0.00069852	0.00032639	0	0.0003025	0.0010599	0.00066908	0.00033087	0.00033087	0.00033087	0
Sp.Gr.TOTAL	0,00068356	0.00069852	0.00032639	3.3063	0.0003025	0.0010599	0.00066908	0.00033087	0.00033087	0.00033087	0.99712
Temperature C	232,88	220	825.64	870,33	870.33	232.88	232.88	750	750	750	25
Pressure kPa	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33	101.33
Gas nm3/hr	1.04E+07	1.05E+07	3.29E+06	0	1.02E+07	3.83E+05	9.97E+06	3,29E+06	3.29E+06	3.39E+06	0
Sol/Liq lps	0	0		1.1638	0	0	0	0	0	0	384.37
Sol/Liq lph	0	0		4189.6	0	Ci	0	0	0	0	1.38E+06
Sol/Liq m3/hr	0	0	0	4.1896	0	0	0	0	0	0	1383.7
Component Mass Flov	v Rates								1. 7.9		
1 Fe2O3 MT/HR	0	0	0	0	0	·	0	0	.0	0	0
2 Fe3O4 MT/HR	0	0	0	6.1326	0	0	0	0	0	0	0
3 FeQ MT/HR	0	0	0	3.8443	0	0	0	0	. 0	0	0
4 Fe1 MT/HR	0	0	0	0	0	0	0	0	0	0	0
5 Si1O2 MT/HR	0	0	0	0.43559	0	0	0	0	0	0	. 0
6 AI2O3 MT/HR	0	C	0	0,08964	0	0	0	0	0		0
7 P1 MT/HR	0	0	0	0.0067507	0	0	0	. 0	0	0	. 0
8 Cu1 MT/HR	0	0	0	0.003984	0	0	0	C	0	0	0
9 Ca1O1 MT/HR	0	0	0	0.58362	0	. 0	0	0	- 0	0	0
10 Mg1O1 MT/HR	0	0	0	0.32315	0	0	0	0	0	0	0
11 TitO2 MT/HR	0	0	0	0.12173	0	0	0	0	٥	0	0
12 S1 MT/HR	0	0	0	0.00332	0	0	0	0	0		0
13 V1 MT/HR	0	. 0	0	0.0071933	0	0	0	0	٥	0	. 0
14 Co1 MT/HR	0	. 0	0	0.0028773	0	0	٥	0	. 0		0
15 Ni1 MT/HR	0	0	0	0.00332	0	0	0	0	0	0	0
16 Zn1 MT/HR	0	0	0	0.0045373	0	0	0	Đ			0
17 Pb1 MT/HR	0	0	0	0.0067507	0	0:					0
19 H2O MT/HR	0	D	0	0	0	0	0	Ð	. 0	0	1379,8
20 H2O MT/HR	95.3	190.6	31,449	٥	95.3	0	95.3	31.449	31,449	32,402	O
21 N2 MT/HR	0	٥	0	٥	0	0.	0	0	0		O
22 O2 MT/HR	0	0	0	0	0	0	0	0	0	0	0
23 C1H4 MT/HR	67	67	22.11	٥	67	0	67	22.11	22.11	22.78	0
24 C102 MT/HR	760.37	760,37	668.28	٥	760,37	752.77	7.6037	2.5092	2.5092	2.5853	0
26 CO MT/HR	12186	12186	3597.6	0	12039	0	12186	4021.3	4021,3	4143.2	0
27 C MT/HR	0	0	0	1.4643	0	0	0	0	0	0	0
28 C5H8 MT/HR	0	0	0	0.81818	0	0:	0	0	0		0
Element Mass Flow Ra	ates						·		.1		7
1H 1	27.502	38.167	9.0758	0.096854	27.502	0	27.502	9.0758	9.0758	9.3508	154.4
2C 6	5483.1	5483.1	1741.6	2.1856	5420.3	205.44	5277.6	1741.6			0
3N 7	0	0	0	0	0	0					0
40 8	7598	7682.6	2568.7	3,1688	7514.3	547.32	7050.6	2326.7	2326.7	+	1225.4
5 Mg 12	0	0	0	0.19489	0	0					
6 Al 13	0	0	0	0.047442	0	0	0		 -		
7 Si 14	0	0	0		0						0
8 P 15	Ö	0	0		0					 	
9\$ 16	0	0	0	0.00332	0						
10 Ca 20	0	0	. 0								
11 Ti 22	0								·		
12 V 23	0	0		0.0071933			·				
13 Fe 26	0										0
14 Co 27	0										
15 Ni 28	0										
16 Cu 29	0				0					 	
17 Zn 30	0							_			·-·
18 Pb 82	0										
		<u>, </u>	1 <u>U</u>	5,0001307		<u>_</u>	. 0	0	0		0

CIRCOFER PROCESS --- STREAM SUMMARY

Stream Number 48	Stream Number	46	47	48	40	
MT/HR SOLIDS 0 738.23 391.07 0 1129.3 MT/HR AQUEOUS 1379.8 0 0 95.3 0 MT/HR AGEOUS 0 0 0 0 0 0 MT/HR TOTAL 1379.8 738.23 391.07 95.3 1129.3 Percent Solids 0 100 100 0 0 100 Sp.Gr.SOLIDS 0 7.6755 1,8874 0 3.4438 Sp.Gr.GASEOUS 0		 				
MT/HR AQUEOUS 1379.8 0 95.3 0 MT/HR CASEOUS 0 0 0 0 0 0 MT/HR CASEOUS 0 1379.8 738.23 399.07 95.3 1129.3 Percent Solids 0 100 100 100 0 100 Sp. Gr. SOLIDS 0 7.6755 1.8874 0 3.4438 Sp. Gr. GASEOUS 0 0 0 0.62339 3.0 Sp. Gr. GASEOUS 0 0 0 0 0 0 Sp. Gr. TOTAL 0.84013 7.6755 1.8874 0.82339 3.4438 Temporature 2 20 484.03 484.03 23.28.8 225.64 Pressure kPa 101.33						
MT/HR GASEOUS 0 0 0 0 0 129.3 1129.3 Percent Solids 0 0 100 100 0 100 100 0 100 100 0 129.3 Percent Solids 0 0 0 0 0 0 3.4438 0 0 0 0 0 3.4438 0						
MT/HR TOTAL		 				
Percent Solids						
Sp.Gr.SOLIDS		· · · · · · · · · · · · · · · · · · ·				
Sp.Gr.AQUEOUS						
Sp.Gr.GASEOUS 0						
Sp.Gr.TOTAL 0.84013						
Temperature C						
Pressure KPa	· · · · · · · · · · · · · · · · · · ·					
Gas nm3/hr 0 <th< td=""><td></td><td>[</td><td></td><td>-</td><td></td><td></td></th<>		[-		
Sol/Liq ps						
SOULIQ ph						
SolfLiq m3/hr						
Component Mass Flow Rates 1 Fa2O3 MT/HR						
1 F9203 MT/HR					, , , , , ,	027.04
2 Fe304 MT/HR			0	-0	0	
S FeO MT/HR		 				
4 Fe1 MT/HR 0 691.41 6.984 0 688.4 5 SIO2 MT/HR 0 0 43.123 0 43.123 6 Al2O3 MT/HR 0 0 0.8744 0 8.6744 7 P1 MT/HR 0 0 0.66832 0 0.66832 8 Cu1 MT/HR 0 0 0.39442 0 0.39442 9 Ca1O1 MT/HR 0 0 5.7779 0 57.779 10 Mg1O1 MT/HR 0 0 31.992 0 31.992 11 Ti1O2 MT/HR 0 0 0.32686 0 0.32868 13 V1 MT/HR 0 0 0.71214 0 0.71214 4 Co1 MT/HR 0 0 0.28486 0 0.28486 15 Ni1 MT/HR 0 0 0.32868 0 0.32868 16 Zn1 MT/HR 0 0 0.4492 0 0.4492 15 Ni1 MT/HR 0 0 0.66832 0 0.66832 15 M		 				
5 Si102 MT/HR 0 0 43.123 0 43.123 6 Al2O3 MT/HR 0 0 8.8744 0 8.8744 7 P1 MT/HR 0 0 0.66832 0 0.66832 8 Cu1 MT/HR 0 0 0.39442 0 0.39442 9 Ca101 MT/HR 0 0 0.57.779 0 57.779 10 Mg101 MT/HR 0 0 0.57.779 0 57.779 10 Mg101 MT/HR 0 0 0.25265 0 12.052 12 S1 MT/HR 0 0 0.32868 0 0.32868 13 V1 MT/HR 0 0 0.22868 0 0.32868 13 V1 MT/HR 0 0 0.22868 0 0.23868 13 V1 MT/HR 0 0 0.24868 0 0.23868 15 Ni MT/HR 0 0 0.2492 0 0.4492 17 Pb1 MT/HR 0 0 0.4492 0 0.46832 19 H		 				
6 AI2O3 MT/HR	5 SitO2 MT/HR	0				
7 P1 MT/HR 0 0 0.66832 0 0.66832 8 Cu1 MT/HR 0 0 0.39442 0 0.39442 9 Ca101 MT/HR 0 0 57.779 0 57.779 10 Mg101 MT/HR 0 0 31.992 0 31.992 11 Ti102 MT/HR 0 0 12.052 0 12.052 12 S1 MT/HR 0 0 0.32868 0 0.32868 13 V1 MT/HR 0 0 0.71214 0 0.71214 14 C01 MT/HR 0 0 0.28486 0 0.28486 15 Ni1 MT/HR 0 0 0.32868 0 0.32868 15 Ni1 MT/HR 0 0 0.4492 0 0.4492 15 Ni1 MT/HR 0 0 0.4492 0 0.4492 15 Ni1 MT/HR 0 0 0.4492 0 0.4492 15 Ni2 MT/HR 0 0 0.4492 0 0.66832 19 L2O M	6 At203 MT/HR	0	0			
8 Cu1 MT/HR		О	0			
9 Ca101 MT/HR 0 0 57.779 0 57.779 10 Mg101 MT/HR 0 0 31.992 0 31.992 11 Ti102 MT/HR 0 0 12.052 0 12.052 12 S1 MT/HR 0 0 0.32868 0 0.32868 13 V1 MT/HR 0 0 0.71214 0 0.71214 14 Co1 MT/HR 0 0 0.28486 0 0.28486 15 Ni1 MT/HR 0 0 0.32868 0 0.28688 16 Zn1 MT/HR 0 0 0.4492 0 0.4492 17 Pb1 MT/HR 0 0 0.4492 0 0.46832 19 H20 MT/HR 1379.8 0 0 95.3 0 20 H20 MT/HR 0 0 0 0 0 0 21 N2 MT/HR 0 0 0 0 0 0 0 21 N2 MT/HR 0 0 0 0 0 0 <td>8 Cu1 MT/HR</td> <td>0</td> <td>0</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>	8 Cu1 MT/HR	0	0		· · · · · · · · · · · · · · · · · · ·	
10 Mg1O1 MT/HR	9 Ca1O1 MT/HR	0	0	57.779	0	
11 Ti1O2 MT/HR	10 Mg1O1 MT/HR	0	0	31.992	0	
13 V1 MT/HR	11 Ti102 MT/HR	0	Ō	12.052	0	
14 Co1 MT/HR	12 \$1 MT/HR	0	0	0.32868	0	0.32868
15 Ni1 MT/HR	13 V1 MT/HR	0	0	0.71214	0	0.71214
16 Zn1 MT/HR	14 Co1 MT/HR	0	0	0.28486	0	
17 Pb1 MT/HR	15 Ni1 MT/HR	0	0	0.32868	0	0.32868
19 H2O MT/HR	16 Zn1 MT/HR	0	0	0.4492	0	0.4492
20 H2O MT/HR	17 Pb1 MT/HR	0	0	0.66832	0	0.66832
21 N2 MT/HR 0	19 H2O MT/HR	1379.8	0	0	95.3	0
22 O2 MT/HR	20 H2O MT/HR	0	0	0	0	0
23 C1H4 MT/HR	21 N2 MT/HR	0	0	0	0	0
24 C102 MT/HR 0 144.96 0 144.98 0 81 125 4 144.96 0 144.98 0 168.22 0 20.157 0 20.157 0 19.5885 10.64 9.5885 10.644 <td>22 O2 MT/HR</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	22 O2 MT/HR	0	0	0	0	0
26 CO MT/HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144.96 0 20.157 0 216.37 0 216.37 0 216.37 0 216.37 0 216.37 0 216.37 0 216.37 0 216.37 0 216.37 0	23 C1H4 MT/HR	0	0	0	0	0
27 C MT/HR 0 0 144.96 0 144.96 28 C5H8 MT/HR 0 0 81 0 81 Element Mass Flow Rates 1 H 1 154.4 0 9.5885 10.664 9.5885 2 C 6 0 0 0 0 0 216.37 0 216.37 3 N 7 0 <t< td=""><td>24 C102 MT/HR</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	24 C102 MT/HR	0	0	0	0	0
28 C5H8 MT/HR	26 CO MT/HR	0	0	0	0	0
Element Mass Flow Rates 1 H 1	27 C MT/HR	0	0	144.96	0	144.96
1 H 1 154.4 0 9.5885 10.664 9.5885 2 C 6 0 0 216.37 0 216.37 3 N 7 0 0 0 0 0 4 O 8 1225.4 10.425 61.257 84.636 71.682 5 Mg 12 0 0 19.294 0 19.294 6 Al 13 0 0 4.6968 0 4.6968 7 Si 14 0 0 20.157 0 20.157 8 P 15 0 0 0.66832 0 0.66832 9 S 16 0 0 0.32868 0 0.32868 10 Ca 20 0 0 41.295 0 41.295 11 Ti 22 0 0 0 7.225 0 7.225 12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0	28 C5H8 MT/HR	0	0	81	0	81
2 C 6 0 0 216.37 0 216.37 3 N 7 0 0 0 0 0 0 4 O 8 1225.4 10.425 61.257 84.636 71.682 5 Mg 12 0 0 19.294 0 19.294 6 Al 13 0 0 4.6968 0 4.6968 7 Si 14 0 0 20.157 0 20.157 8 P 15 0 0 0.66832 0 0.66832 9 S 16 0 0 0.32868 0 0.32868 10 Ca 20 0 0 41.295 0 41.295 11 Ti 22 0 0 0 7.225 0 7.225 12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0	Element Mass Flow R	ates				
3 N 7 0 0 0 0 0 4 O 8 1225.4 10.425 61.257 84.636 71.682 5 Mg 12 0 0 19.294 0 19.294 6 Al 13 0 0 4.6968 0 4.6968 7 Si 14 0 0 20.157 0 20.157 8 P 15 0 0 0.66832 0 0.66832 9 S 16 0 0 0.32868 0 0.32868 10 Ca 20 0 0 41.295 0 41.295 11 Ti 22 0 0 0 7.225 0 7.225 12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.39442 0 0.39442 17 Zn 30 0 0	1H 1	154.4	0	9.5885	10.664	9,5885
4 O 8 1225.4 10.425 61.257 84.636 71.682 5 Mg 12 0 0 19.294 0 19.294 6 Al 13 0 0 4.6968 0 4.6968 7 Si 14 0 0 20.157 0 20.157 8 P 15 0 0 0.66832 0 0.66832 9 S 16 0 0 0.32868 0 0.32868 10 Ca 20 0 0 41.295 0 41.295 11 Ti 22 0 0 0.7225 0 7.225 12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492		0	0	216.37	0	216.37
5 Mg 12 0 0 19 294 0 19 294 6 Al 13 0 0 4,6968 0 4,6968 7 Si 14 0 0 20,157 0 20,157 8 P 15 0 0 0,66832 0 0,66832 9 S 16 0 0 0,32868 0 0,32868 10 Ca 20 0 0 41,295 0 41,295 11 Ti 22 0 0 7,225 0 7,225 12 V 23 0 0 0,71214 0 0,71214 13 Fe 26 0 727.8 7,3515 0 735.15 14 Co 27 0 0 0,28486 0 0,28486 15 Ni 28 0 0 0,39442 0 0,39442 17 Zn 30 0 0 0,4492 0 0,4492	3N 7	0	0	0	0	. 0
6 Al 13 0 0 4,6968 0 4,6968 7 Si 14 0 0 20,157 0 20,157 8 P 15 0 0 0,66832 0 0,66832 9 S 16 0 0 0,32868 0 0,32868 10 Ca 20 0 0 41,295 0 41,295 11 Ti 22 0 0 7,225 0 7,225 12 V 23 0 0 0,71214 0 0,71214 13 Fe 26 0 727.8 7,3515 0 735.15 14 Co 27 0 0 0,28486 0 0,28486 15 Ni 28 0 0 0,32868 0 0,32868 16 Cu 29 0 0 0,39442 0 0,39442 17 Zh 30 0 0 0,4492 0 0,4492		1225.4	10.425	61.257	84.636	71.682
7 Si 14 0 0 20.157 0 20.157 8 P 15 0 0 0.66832 0 0.66832 0 0.66832 9.66832 0 0.66832 0 0.66832 0 0.66832 0 0.66832 0 0.68832 0 0.32868 0 0.32868 0 0.32868 0 0.32868 0 41.295 0 41.295 0 41.295 0 41.295 0 41.295 0 41.295 0 41.295 0 7.225 0 7.225 0 7.225 0 7.225 0 7.225 12.225 0 7.225 0 7.225 0 7.225 12.225 0 0 0.71214 0 0.71214 0 0.71214 0 0.71214 0 0.71214 0 0.71214 0 0.735.15 0 735.15 0 735.15 0 735.15 0 0.28486 0 0.28486 0 0.28486 0 <td></td> <td>0</td> <td>0</td> <td>19.294</td> <td>0</td> <td>19.294</td>		0	0	19.294	0	19.294
8 P 15 0 0 0.66832 0 0.66832 9 S 16 0 0 0.32868 0 0.32868 10 Ca 20 0 0 41.295 0 41.295 11 Ti 22 0 0 7.225 0 7.225 12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.32868 0 0.32868 16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492				4.6968	0	4,6968
9 \$ 16 0 0 0.32868 0 0.32868 10 Ca 20 0 0 0 41.295 0 41.295 11 Ti 22 0 0 0 7.225 0 7.225 12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.32868 0 0.32868 16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492		0	0	20.157	0	20.157
10 Ca 20 0 0 41.295 0 41.295 11 Ti 22 0 0 7.225 0 7.225 12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.32868 0 0.32868 16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492		0	0	0.66832	0	0.66832
11 Ti 22		0	0	0.32868	0	0,32868
12 V 23 0 0 0.71214 0 0.71214 13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.32868 0 0.32868 16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492		0	0	41.295	0	41.295
13 Fe 26 0 727.8 7.3515 0 735.15 14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.32868 0 0.32868 16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492		0	0	7.225	0	7.225
14 Co 27 0 0 0.28486 0 0.28486 15 Ni 28 0 0 0.32868 0 0.32868 16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492	12 V 23	0	0	0.71214	0	0,71214
15 Ni 28 0 0 0.32868 0 0.32868 16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492	13 Fe 26	C	727.8	7.3515	0	735.15
16 Cu 29 0 0 0.39442 0 0.39442 17 Zn 30 0 0 0.4492 0 0.4492	14 Co 27	0	0	0.28486	0	0.28486
17 Zn 30 0 0 0.4492 0 0.4492	15 Ni 28	0	0	0.32868	0	0.32868
		0	0	0.39442	0	0.39442
18 Pb 82 0 0 0.66832 0 0.66832	17 Zn 30	0	0	0.4492	0	0.4492
	18 Pb 82	0	0	0.66832	0	0.66832

CASE DEFINITION

Title : CIRCOFER MODEL

Case :

Data Storage File Name : Circofer.sfw

Mass Balance Option : ON Heat Balance Option : ON

Units of Mass : metric tonne

Units of Time : hour

Ambient Air Pressure : 101.325 kPa Standard Pressure : 101.325 kPa

Ambient Air Temperature : 20.00 C Standard Temperature : 0.00 C

Plant Site Latitude : 0.00 Degrees Plant Site Elevation : 0.00 Meters

COMPONENT DATA

ROW	CNM	CHF				PHC CN	/IW	SGF		
	Fe203	Fe203	SI1	159.	6922	5.2400	0.0000	0.0000		
2	Fe304	Fe304	SI1	231.	5386	5.1800	0.0000	0.0000		
3	Fe0	Fe0	SI1	71.	8464	5.7000	0.0000	0.0000		
	Fe1	Fe1	SI1	55.	8470	7.8600	0.0000	0.0000		
	Si102	Si102	SI1	60.	0848	2.6500	0.0000	0.0000		
	A1203	A1203	SI1		9612	3.9650	0.0000	0.0000		
	P1	P1	SI1		9738	1.8200	0.0000	0.0000		
	Cu1	Cu1	SII		5400	8.9200	0.0000	0.0000		
	Ca101	Ca101	SI1		0794	3.3100	0.0000	0.0000		
	Mg101	Mg101	SI1		3114	3.5800	0.0000	0.0000	*	
	Ti102 S1	Ti102 S1	SI1 SI1		8988	4.2600	0.0000	0.0000		
	V1	V1	SII		.0640 .9420	2.0000 5.9600	0.0000	0.0000		
	Co1	Co1	SI1		9330	8.9000	0.0000	0.0000		
	Ni1	Ni1	SI1		7100	8.9000	0.0000	0.0000		
	Zn1	Zn1	SI1		3800	7.1400	0.0000	0.0000		
	Pb1	Pb1	SI1		1900	11.3400	0.0000	0.0000		
		3Ca1C103			0894	1.0000	0.0000	0.0000		•
	H2O	H2O	LI3		0153	1.0000	0.0000	0.0000		
20	H2O	H2O	GC8		0153	0.0008	0.0000	0.0000		
21	N2	N2	GC8	28.	0134	0.0012	0.0000	0.0000		
	02	02	GC8	31.	9988	0.0014	0.0000	0.0000		_
	C1H4	C1H4	GC8		.0430	0.0007	0.0000	0.0000		
	C102	C102	GC8		.0100	0.0020	0.0000	0.0000	-	
	H2	H2	GC8		.0159	0.0001	0.0000	0.0000		
	CO	CO	GC8		.0106	0.0012	0.0000	0.0000	:	
27		C	SI1		.0112	2.2500	0.0000	0.0000		
20	C5H8	C5H8	SI1	60.	.1195	0.6879	0.2491	0.2690		
ROW	CNM	SOL	A	В		Hq D	Wi	COV A	ВС	
	CNM Fe2O3	0.000	00 0.	.00000	0.000	C pH	Wi 0.00000	COV A	0.00000	0.00000
1 2	Fe2O3 Fe3O4	0.000	00 0. 00 0.	00000	0.000	00 0.00000	0.00000	0.00000	0.00000	0.00000
1 2 3	Fe2O3 Fe3O4 FeO	0.000 0.000 0.000	00 0. 00 0. 00 0.	00000	0.000	00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000
1 2 3 4	Fe2O3 Fe3O4 FeO Fe1	0.000 0.000 0.000	00 0. 00 0. 00 0.	00000	0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000
1 2 3 4 5	Fe2O3 Fe3O4 FeO Fe1 Si1O2	0.000 0.000 0.000 0.000	00 0. 00 0. 00 0.	00000	0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000
1 2 3 4 5 6	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3	0.000 0.000 0.000 0.000	00 0. 00 0. 00 0. 00 0.	.00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000	00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1	0.000 0.000 0.000 0.000 0.000	00 0. 00 0. 00 0. 00 0. 00 0.	.00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1	0.000 0.000 0.000 0.000 0.000	00 0. 00 0. 00 0. 00 0. 00 0.	.00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1 Cu1 Ca1O1	0.000 0.000 0.000 0.000 0.000 0.000	00 0. 00 0. 00 0. 00 0. 00 0. 00 0.	.00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101	0.000 0.000 0.000 0.000 0.000 0.000	00 0. 00 0. 00 0. 00 0. 00 0. 00 0.	.00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102	0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1	0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0.	.00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.0	.00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.0	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000 0.	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000 0.	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000 0.	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000 0.	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20 N2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20 N2 O2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20 N2 O2 C1H4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20 N2 O2 C1H4 C102	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20 N2 O2 C1H4 C102 H2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 20 21 22 23 24 25 26	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20 N2 O2 C1H4 C102 H2 C0	0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C10 H20 H20 N2 O2 C1H4 C102 H2 C0	0.000 0.000		.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00 0.00000 00 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000

COMPONENT DATA

	CNM	CRIT T	CRIT P	CRIT V	ANTOINE	VAPOR PRES	A B C HENRY	
	Fe2O3	0.000	0.0000		0.00000		.000 0.0	
	Fe304	0.000	0.0000		0.00000		.000 0.0	
	FeO	0.000	0.0000		0.00000	0.00 0	.000 0.0	
	Fe1	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Sì102	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	A1203	0.000	0.0000	0.000	0.00000 0.00000 0.00000	0.00 0	.000 0.0	
	P1		0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Cu1	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Ca101	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Mg101	0.000	0.0000	0.000	0.00000 0.00000 0.00000	0.00 0	.000 0.0	
	Ti102	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	S1	0.000	0.0000	0.000	0.00000 0.00000 0.00000	0.00 0	.000 0.0	
	V1	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Co1	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Ni1	0.000	0.0000	0.000	0.00000 0.00000 0.00000	0.00 0	.000 0.0	
	Zn1	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Pb1	0.000	0.0000	0.000	0.00000	0.00 0	.000 0.0	
	Ca1C103	0.000	0.0000	0.000	0.00000	0.00 0	0.00	
	H2O	0.000	0.0000	0.000	0.00000	0.00 0	0.00	•
	H2O	0.000	0.0000	0.000	0.00000	0.00 0	0.00	
	N2	0.000	0.0000	0.000	0.00000 0.00000 0.00000 0.00000	0.00 0	0.00	
	02	0.000	0.0000	0.000	0.00000	0.00 0	0.00	
	C1H4	0.000	0.0000	0.000	0.00000	0.00 0	0.0	
	C1O2	0.000	0.0000	0.000	0.00000	0.00 0	0.0	
	H2	0.000	0.0000	0.000	0.00000	0.00 0	0.0	
	CO	133.400			6.24020		.010 63426.0	
27		0.000	0.0000	0.000	0.00000	0.00 0	0.0	
28	C5H8	503.000	41.2393	276.000	6.91820	1104.99 228	.851 0.0	
ROW	CNM	REFEREN	ICE	H25	HTE-A	A HTE-B	HTE-C	нте-р
	CNM Fe2O3	REFEREN B672158	-19	97000	HTE-F	46.1517		HTE-D 21.9462
1			-19		-20749	46.1517	-3.8751	21.9462
1 2	Fe2O3	B672158	-19 -20	97000	-20749 -31312 8754	46.1517 71.0525	-3.8751 -7.8736	21.9462 32.0732
1 2 3 4	Fe2O3 Fe3O4 FeO Fe1	B672158 B672160 BAK2248 B672151	-19 -20 -6	97000 57300	-20749 -31312 8754 -7903	46.1517 71.0525 -8.5950 14.0914	-3.8751 -7.8736	21.9462 32.0732 -21.4692
1 2 3 4 5	Fe2O3 Fe3O4 FeO Fe1 Si1O2	B672158 B672160 BAK2248 B672151	-19 -20 -6	97000 57300 52382	-20749 -31312 8754 -7903	46.1517 71.0525 -8.5950 14.0914	-3.8751 -7.8736 9.1416 -1.3293	21.9462 32.0732 -21.4692 11.6233
1 2 3 4 5 6	Fe203 Fe304 Fe0 Fe1 Si102 Al203	B672158 B672160 BAK2248 B672151 B672387 B672042	-19 -20 -6 -7 -2: -40	97000 57300 52382 0	-20749 -31312 8754 -7903 -8654 -12425	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653	-3.8751 -7.8736 9.1416 -1.3293 -0.5456	21.9462 32.0732 -21.4692 11.6233 8.8977
1 2 3 4 5 6 7	Fe2O3 Fe3O4 FeO Fe1 Si1O2 Al2O3 P1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282	-19 -20 -00 -00 -00 -00 -00 -00 -00 -00 -00	97000 57300 52382 0 17720	-20749 -31312 8754 -7903 -8654 -12425 -2816	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239	-3.8751 -7.8736 9.1416 -1.3293 -0.5456	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085
1 2 3 4 5 6 7 8	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282	-19 -20 -00 -00 -00 -00 -00 -00 -00 -00 -00	97000 57300 52382 0 17720 00500 0	-20749 -31312 8754 -7903 -8654 -12425 -2816	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276	21.9462 32.0732 -21.4692 11.6233 8.8977
1 2 3 4 5 6 7 8 9	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129	-19 -20 -00 -00 -00 -00 -00 -00 -00 -00 -00	97000 57300 52382 0 17720 00500 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000
1 2 3 4 5 6 7 8 9	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672128 B672227	-19 -20 -00 -00 -00 -00 -00 -00 -00 -00 -00	97000 57300 52382 0 17720 00500 0 0 51790 43760	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694
1 2 3 4 5 6 7 8 9 10	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672129 B672227 B672431	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762
1 2 3 4 5 6 7 8 9 10 11	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672227 B672233	-19 -20 -40 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672227 B672431 B672335 B672454	-19 -20 -40 -21 -12 -22 -23 -23 -23 -23 -23 -23 -23 -23 -2	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672227 B672233 B672431 B672335 B672454	-19 -20 -40 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672227 B672431 B672335 B672454 B672210	-19 -20 -40 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1	B672156 B672160 BAK2248 B672151 B672387 B672042 B672282 B672227 B672431 B672335 B672454 B672113 B672270 B672480	-19 -20 -40 -19 -19 -20 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1	B672158 B672160 BAK2248 B672151 B672387 B672042 B672282 B672227 B672431 B672335 B672454 B672270 B672480 B672294	-19 -20 -40 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103	B672156 B672160 BAK2248 B672151 B672387 B672042 B672282 B672227 B672431 B672233 B672454 B672270 B672480 B672294 B677141	-19	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20	B672158 B672151 B672387 B672042 B672282 B672129 B672431 B672431 B672435 B672436 B672294 B672294	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20	B672158 B672151 B672387 B672042 B672282 B672129 B672237 B672431 B672431 B672431 B672436 B672436 B672480 B672294	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 0 51790 43760 25670 0 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2	B672158 B672151 B672387 B672042 B672282 B672129 B672227 B672431 B672431 B672434 B672294 B672294 B672182 B672182	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -17445 -1512 -9122 -5071 -2403 -2846	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906 7.5728	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003 0.2525	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2 O2	B672158 B672151 B672387 B672042 B672282 B672098 B672227 B672431 B672431 B672434 B672294 B672182 B672182	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -17445 -1512 -9122 -5071 -2403 -2846 -2979	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906 7.5728 7.9696	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794 1.7697
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2 O2 C1H4	B672158 B672151 B672387 B672042 B672282 B672098 B672227 B672431 B672431 B672431 B672480 B672128 B672182 B672182 B672244 B67227 B672221	-19	97000 57300 52382 0 17720 00500 0 051790 43760 25670 0 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -17645 -1512 -9122 -5071 -2403 -2846 -2979 -6424	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906 7.5728 7.9696 11.8424	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794 1.7697 8.0422
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2 O2 C1H4 C102	B672158 B672151 B672387 B672042 B672042 B672098 B672098 B672431 B672454 B672113 B672454 B672113 B672480 B672182 B6722480 B672182 B6722480 B672182 B6722480	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 051790 43760 25670 0 0 0 0 0 0 0 0 88610 68315 57795 0 0 17880 94051	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403 -2846 -2979 -6424 -5911	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906 7.5728 7.9696 11.8424 12.9357	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907 0.3891	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794 1.7697 8.0422 6.1869
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2 O2 C1H4 C102 H2	B672158 B672151 B672387 B672042 B672042 B672098 B672227 B672431 B672454 B672454 B672113 B672454 B672182 B672248 B672182 B672248 B672248 B672248 B672248 B672248 B672248	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 051790 43760 25670 0 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403 -2846 -2979 -6424 -5911 -1837	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906 7.5728 7.9696 11.8424 12.9357 6.3659	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907 0.3891 0.4428	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794 1.7697 8.0422 6.1869 -0.2847
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2 O2 C1H4 C102 H2 C0	B672158 B672151 B672387 B672042 B672042 B672098 B672227 B672431 B672454 B672454 B672182 B672248 B672182 B672248 B672182 B67227 B672244 B67227 B67227	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 051790 43760 25670 0 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403 -2846 -2979 -6424 -5911 -1837 -1787	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906 7.5728 7.9696 11.8424 12.9357 6.3659 6.0661	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907 0.3891 0.4428 0.9368	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794 1.7697 8.0422 6.1869 -0.2847 -0.3112
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Fe203 Fe304 Fe0 Fe1 Si102 Al203 P1 Cu1 Ca101 Mg101 Ti102 S1 V1 Co1 Ni1 Zn1 Pb1 Ca1C103 H20 H20 N2 O2 C1H4 C102 H2 C0	B672158 B672151 B672387 B672042 B672042 B672098 B672227 B672431 B672454 B672454 B672113 B672454 B672182 B672248 B672182 B672248 B672248 B672248 B672248 B672248 B672248	-19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	97000 57300 52382 0 17720 00500 0 051790 43760 25670 0 0 0 0 0 0 0 0 0 0 0 0 0	-20749 -31312 8754 -7903 -8654 -12425 -2816 -1423 -4315 -4612 -6260 13015 -999 -3885 -1763 -1445 -1512 -9122 -5071 -2403 -2846 -2979 -6424 -5911 -1837	46.1517 71.0525 -8.5950 14.0914 19.1651 28.9653 12.9239 5.0156 12.0730 11.8081 16.8540 -44.4133 4.4929 7.9629 6.2394 4.7430 4.9651 23.8351 16.1848 7.2906 7.5728 7.9696 11.8424 12.9357 6.3659	-3.8751 -7.8736 9.1416 -1.3293 -0.5456 1.0071 -11.6659 0.9276 0.4606 0.3610 0.6334 56.5440 1.2791 0.8444 0.7740 1.6445 1.6774 3.2146 2.7637 1.3003 0.2525 0.2720 2.9907 0.3891 0.4428	21.9462 32.0732 -21.4692 11.6233 8.8977 11.1085 0.0000 -0.4694 2.0088 3.1765 3.4762 -14.3084 -1.3985 4.4112 -0.5571 -0.3435 -0.3504 5.1569 0.0000 0.3596 1.7794 1.7697 8.0422 6.1869 -0.2847

COMPONENT DATA

ROW	CNM	TEMP	RANGE oK	HTG-A	HTG-B	HTG-C	HTG-D
1	Fe2O3	298.2	1800.0	-182323	-34.6418	-13.7715	-28.2755
2	Fe304	298.2	1800.0	-243067	-58.6967	-18.9430	-46.8195
3	FeO	298.2	1650.0	-58450	-19.5576	-4.9564	-7.3814
4	Fe1	298.2	1811.0	2679	-8.2139	-4.0925	-5.4957
5	Si102	298.2	2000.0	-210342	-16.8483	-6.1496	-14.5464
6	A12O3	298.2	2327.0	-386441	-25.8901	-10.0349	-27.6544
7	P1	298.2	317.3	-2534	6.8556	-27.4268	0.0000
. 8	Cu1	298.2	1357.6	1948	-9.4355	-3.1931	-3.6331
9	Ca101	298.2	2000.0	-146099	-14.8629	-4.7096	-10.7418
10	Mg101	298.2	2000.0	-138544	-11.5487	-4.4916	-9.9661
11	Ti102	298.2	2000.0	-217923	-19.7530	-6.5095	-14.7172
12	S1	298.2	388.4	-5700	12.4302	-23.6630	5.4073
13	V1	298.2	2190.0	2969	-9.8550	-2.7412	-5.5855
14	Co1	298.2	1768.0	2071	-8.3546	-3.9177	-4.1323
15	Ni1	298.2	1728.0	3122	-10.1656	-3.1379	-5.8385
	Zn1	298.2	692.7	834	-9.1557	-4.7988	-1.9233
	Pb1	298.2	600.7	544	-13.9080	- 5. 5553	-1.5560
	Ca1C1O3	298.2	1200.0	-283124	-23.3813	-15.1456	-11.0884
19	H2O	298.2	373.2	-70630	-1.0739	-26.4253	0.0000
	H2O	298.2	2000.0	-54212	-48.4557	-3.8711	-6.7579
	N2	298.2	3000.0	5078	-51.3044	-2.2358	-9.9139
	02	298.2	3000.0	5395	-54.8302	-2.3535	-10.5960
	C1H4	298.2	2000.0	-14673	-45 4106	-7.1789	-6.9854
	C102	298.2	3000.0	-86430	-58.7976	-3.7771	-15.3476
	H2	298.2	3000.0	4863	-36.6465	-2.1036	-9.3536
	CO	298.0	700.0	-25393	-46.6664	-5.1645	-2.2650
27	=	298.2	3000.0	2405	-3.3866	-1.5836	-5.1587
28	C5H8	135.9	318.0	23803	-68.4779	-61.0649	-1.8797

FLOWSHEET DATA

NO	OPR	UNIT PROCESS	IS1	IS2	IS3	IS4	IS5	IS6	INV	OS1	OS2	OS3	OS4	OS5	OS6
1	SEC	CIRCOFER PROCESS	0	0	0	0	0	0	0	0	0	0	0	0	0
2	HPR	LOCK HOPPER	1	2	3	0	0	0	0	4	0	0	0	0	0
3	SPP	VENTURI 1	4	0	11	0	0	0	0	5	6	0	0	0	0
4	SPP	CYCLONE1	6	5	0	0	0	0	0	8	7	0	0	0	0
5	SPP	VENTURI 2	7	30	31	0	0	0	0	12	11	0	0	0	0
6	SPP	GASIFIER	9	10	12	0	44	0	0	18	0	0	0	0	0
7	SPP	CFB STAGE 1	18	0	37	43	0	0	0	29	38	39	0	0	0
8	SPP	RECYCLE CYCLONE	39	38	0	0	0	0	0	30	31	0	0	0	0
9	HTX	STEAM BOILER	8	0	0	45	0	0	0	36	46	. 0	0	0	0
10	HTX	PROGAS HEATER 1	41	0	0	26	27	0	0	25	28	0	.0	0	0
11	SPP	BB STAGE 2	29	42	0	0	0	0	0	50	37	0	0	0	0
12	SPP	DUST SEPARATOR	36	0	0	0	0	0	0	32	33	0	0	. 0	. 0
13	SPP	VENTURI SCRUBBER	33	0	.0	0	0	0	0	34	49	0	0	0	0
14	SPS	STREAM SPLITTER	25	0	0	0	0	0	0	44	43	42	-0	0	0
15	SPC	CO2 ABSORBER	34	0	0	0	0	0	0	41	40	0	0	0	ō
16	SPC	HOT MAGNETIC SEPARATOR	50	0	0	0	0	0	0	48	47	0	0	0	. 0

			HEAT BA	LANCE S	SUMMARY	- 10000	00 KCAI	J/HOUR	
		INPUT	HEAT	HEAT	ENERGY	HEAT	HEAT	OUTPUT	
OP	PROCESS STEP	STREAM	REACT	SOLUT	INPUT	LOSS	REQRD	STREAM	TOTAL
	+	t	+		+			t- -+	
1	CIRCOFER PROCESS	0	0	0	0	0	0	0	. 0
2	LOCK HOPPER	2	0	0	0	0	0	-2	0
3	VENTURI 1	2703	-56	0	0	0	-1643	-1004	0
4	CYCLONE1	1004	0	0	0	0	. 0	-1004	0
5	VENTURI 2	2949	0	0	0	0	0	-2949	0
6	GASIFIER	1069	314	0	0	0	229	-1612	0
7	CFB STAGE 1	3345	-20	0	0	0	0	-3326	Ō
8	RECYCLE CYCLONE	2992	0	0	0	-150	0	-2842	0
9	STEAM BOILER	927	0	0	0	0	0	-927	. 0
10	PROGAS HEATER 1	665	2777	0	0	0	0	-3442	0
11	BB STAGE 2	1129	33	0	0	0	0	-1162	0
12	DUST SEPARATOR	651	0	0	0	0	0	-651	Ō
13	VENTURI SCRUBBER	651	56	0	0	0	0	-707	0
14	STREAM SPLITTER	2412	0	0	0	0	0	-2412	0
15	CO2 ABSORBER	686	0	0	0	0	0	-686	0
16	HOT MAGNETIC SEP	225	0	Ω	n	-112	n	-112	Ď

STREAM TEMPERATURES AND ENTHALPIES

		DIVENM TEMEF	WICKES Y	MID ENINATATES		
	STREAM	TEMP-C	TEMP-F	KCAL/HR	BTU/HR	KJ/H
	Tron Ore to Lockhopper					
	Char	32.00	03.60	1455227.0 501240.0	5774809	608867
	Additive	25 00	03.00	501240.0 -442.0	1989080	209718
	Iron Ore from Lockhopper	23.00	99 10	-443.0 1956024.0 76183568.0	-1756	-185
	Dried Iron Ore	300.00	572 00	76103560 0	202220020	818400 31875204
	top gas from Venturi 1	300.00	572.00	927454477.0	302320830	
	Iron Ore	300.00		76183568.0		
	Top Gas to Steam boiler	300.00		927454477.0	302320830 3680436798	31875204
	Coal	25.00				388046953
	Oxygen	32.00		261576.0 346590.0	1038016	109443
	Top gas recycled			346590.0 2700813369.0		
12	Iron Ore Feed to Gasifier	700.03	1450.49	248165743.0		
	Air for Classifier	32.00	89.60	2369.0	984801255	103832546
	Compressed Air	32.00		2363.0	9400	332
	Iron Ore from Cyclone 2		1302 00	2369.0 173218033.0	9400	
	Feed to CFB			142215195.0		124/4425
	Iron Ore Recycle		1382.00	47405065.0	564355503 188118501	59502837
	Iron Ore to Cyclone 2			1611926247.0	100110201	19834279
	Air to Cyclone 2	870.00			6396640294	
	Air to Calciner	33 00	00 00	2200.0	2496755	
	Combustion Air to Heater 2	32.00	89 60	4303.0	9400	
	Natural gas to Heater 2	32.00	89.60	9918111.0 1333293.0	39358247	
	Exhaust from Heater 2	675 00	1247 00	809492155.0	5290933 3212324474	
	Preheated Reformed gas for		652.32			
	Reducing gas for CFB			2411598512.0	9569996297	
	Natural gas for Heater 1	32.00		1507548.0	5982433	
	Combustion Air for Heater 1			11212015.0		
	Exhaust for Heater 1			1030746480.0		
	Partially Reduced Ore		1742.00	333510716.0	1323477477	
	Top gas			2839569431.0		
	Recycle solids		1529.30		11363740	1198136
	Dust		428.00		0	1130130
33	Clean cool top gas			651000067.0		272378428
	Dry top gas			686185734.0	2723005054	287100111
	35			1565301081.0	6211616682	654921972
36	Cold top gas			651000067.0	2583377042	272378428
	Reducing gas from BB			937533667.0		
	Partially Reduced Fines		1598.59			
	Top Gas with Fines			2989008777.0		
40	CO2		451.19		132829416	
41	Cold Recycle gas			652713285.0		
	Recycle gas for BB			795827509.0	3158098778	332974229
43	Recycle gas for CFB		1382.00		3158098778	
44	Recycle gas for Gasifier	750.00	1382.00	819943494.0	3253798741	343064358
45	Water	25.00	77.00		-874	-92
46	Steam	220.00			1097058882	115668432
	DRI	484.03		46850596.0	185918192	19602289
	Char and Ash	484.03		65453819.0	259741743	27385877
	Water	232.88	451.19	20464462.0	81209548	8562330
50	Reduced Iron	825.64	1518.15	224608830.0	891319870	93976334

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

NO.	STREAM +	TIME	ACFM	SCFM	M3/HR	NM3/HR
	top gas from Venturi 1	100.0000	12931532	6161888	21970812	10469114
8	Top Gas to Steam boiler	100.0000	12931532	6161888	21970812	10469114
10	Oxygen	100.0000			148680	133088
11	Top gas recycled	100.0000	23673628	6092101	40221749	10350546
13	Air for Classifier	100.0000	511	457	868	777
14	Compressed Air	100.0000	511	457	868	777
18	Iron Ore to Cyclone 2	100.0000	10029545	2151513	17040305	3655444
19	Iron Ore to Cyclone 2 Air to Cyclone 2	100.0000	5455	1303	9268	2214
20	Air to Calciner	100.0000	511	457	868	777
	Combustion Air to Heater 2	100.0000	2139273	1914935	3634648	3253496
	Natural gas to Heater 2	100.0000	188752	168958	320692	
	Exhaust from Heater 2	100.0000	7233548	2083894	12289876	3540558
	Preheated Reformed gas for CFB		10368202		17615688	
	Reducing gas for CFB	100.0000	21979638	5866452	37343642	9967165
26	Natural gas for Heater 1	100.0000	213421	191040	362605	324580
	Combustion Air for Heater 1	100.0000	2418360	2164755	4108820	3677942
28	Exhaust for Heater 1	100.0000	8824207	2355796	14992423	4002522
	Top gas	100.0000	24371199		41406930	10233342
33	Clean cool top gas	100.0000	11125605		18902524	10469114
34	Dry top gas	100.0000	11287139	6092101	19176972	10350546
	35	100.0000	21050593			15813721
36	Cold top gas Reducing gas from BB Top Gas with Fines	100.0000	11125605		18902524	10469114
37	Reducing gas from BB	100.0000	7789251	1935929	13234022	3289165
39	Top Gas with Fines	100.0000	25220140	6023117	42849290	10233342
7.0		100.0000		225649	710243	383380
41	Cold Recycle gas	100.0000	10869106	5866452	18466729	9967165
42	Recycle gas for BB	100.0000	7253281	1935929	12323402	3289165
43	Recycle gas for CFB	100.0000	7253281	1935929	12323402	3289165
44	Recycle gas for Gasifier	100.0000	7473077	1994594	12696838	3388836

VOLUMETRIC FLOW RATE OF STREAMS WITH LIQUIDS AND SOLIDS ONLY

NO.	STREAM	TIME	USGPM	LPS	M3/HR	M3/DY
1	Iron Ore to Lockhopper				313.997	
2	Char				95.083	
3	Additive			4.1960		362.54
4	Iron Ore from Lockhopper			117.8273		10180.28
	Dried Iron Ore			91.2258		
7	Iron Ore			91.2258		
	Coal			45.0933		
	Iron Ore Feed to Gasifier	100.0000		92.3896		
29	Partially Reduced Ore				414.769	
31	Recycle solids				4.190	
38	Partially Reduced Fines				4.190	
45	Water				1383.744	
46	Steam				1642.316	
47	DRI	100.0000	423.462	26.7164	96.179	
48	Char and Ash			64.3790		
49	Water			32.1502		
50	Reduced Iron			91.0954		

MASS FLOW RATES - MT/HR

	STREAM			MT/HR-GC	
1	Iron Ore to Lockhopper Char Additive Iron Ore from Lockhopper Dried Iron Ore top gas from Venturi 1 Iron Ore Top Gas to Steam boiler Coal	1095.600	95.300	0.00	1190.90
2	Char	200.000	0.000	0.00	200.00
3	Additive	50.000	0.000	0.00	50.00
4	Iron Ore from Lockhopper	1345.600	95.300	0.00	1440.90
5	Dried Iron Ore	1345.600	0.000	0.00	1345.60
6	top gas from Venturi 1	0.000	0.000	13203.85	13203.85
7	Iron Ore	1345.600	0.000	0.00	1345.60
8	Top Gas to Steam boiler	0.000 200.000	0.000	13203.85	13203.85
9	Coal				
	Oxygen	0.000	0.000	190.00 13108.55	190.00
11	Top gas recycled	0.000	0.000	13108.55	13108.55
12	Iron Ore Feed to Gasifier Air for Classifier Compressed Air	1250 /52	0 000	0 00	1250 45
13	Air for Classifier	0.000	0.000	1.00	1.00
14	Compressed Air	0.000	0.000	1.00	1.00
18	Air for Classifier Compressed Air Iron Ore to Cyclone 2 Air to Cyclone 2 Air to Calciner	1416.814	0.000	4533.60	5950.42
19	Air to Cyclone 2	0.000	0.000	2.85	2.85
20	Air to Calciner	0.000	0.000	1.00	1.00
21	Combustion Air to Heater 2	0.000	0.000	4187.27	4187.27
22	Natural gas to Heater 2	0.000	0.000	205.47	205.47
23	Exhaust from Heater 2	0.000	0.000	4392.73	4392.73
24	Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Preheated Reformed gas for CFB Reducing gas for CFB Natural gas for Heater 1 Combustion Air for Heater 1 Exhaust for Heater 1 Partially Reduced Ore	0.000	01000	772.20	772.20
25	Reducing gas for CFB	0.000	0.000	12355.78	12355.78
26	Natural gas for Heater 1	0.000	0.000	232.32	232.32
27	Combustion Air for Heater 1	0.000	0.000	4733.53	4733.53
28	Exhaust for Heater 1	0.000	0.000	4965.85	4965.85
29	Partially Reduced Ore	1371.334	0.000	0.00	1371.33
30	Top gas	0.000	0.000	12962.08	12962.08
31	Recycle solids	13.852	0.000	0.00	13.85
33	Clean cool top gas	0.000	0.000	13203.85	13203.85
34	Dry top gas	0.000	0.000	13108.55	13108.55
35	35	0.000	0.000	1567.80	1567.80
36	Cold top gas	0.000	0.000	13203.85	13203.85
31	Exhaust for Heater 1 Partially Reduced Ore Top gas Recycle solids Clean cool top gas Dry top gas 35 Cold top gas Reducing gas from BB Partially Reduced Fines Top Gas with Fines CO2 Cold Recycle gas	0.000	0.000	4319.44	4319.44
38	Partially Reduced Fines	13.852	0.000	0.00	13.85
39	Top Gas with Fines	0.000	0.000	12962.08	12962.08
40	Cold December	0.000	0.000	752.77	752.77
41	Cold Recycle gas	0.000	0.000	12355.78	12355.78 4077.41
	Recycle gas for BB	0.000	0.000	4077.41	4077.41
4.0	Recycle gas for CFB	0.000	0.000	4077.41	4077.41
44	Recycle gas for Gasifier	0.000	0.000	4200.96	4200.96
	Water Steam	0.000	1379.753	0.00	1379.75
	DRI	0.000	13/3-/23	0.00	1379.75 1379.75 738.23
	Char and Ash	730.227	0.000	0.00	738.23
	Water	221.0/2	0.000	0.00	391.07
	Reduced Iron	1120 200	000.00		
50	THE TENT	1129.300	0.000	0.00	1129.30

SPECIFIC GRAVITIES

	STREAM	PCS	SG-SI	SG-LI		SG-TC
	Iron Ore to Lockhopper	91.9976	5.0205	0.9951	0.0000	3.7927
2	Char	100.0000	2.1034	0.0000	0.0000	2.1034
3	Additive	100.0000		0.0000	0.0000	3.3100
4	Additive Iron Ore from Lockhopper Dried Iron Ore	93.3861	4.0973	0.9951	0.0000	3.3969
5	Dried Iron Ore	100.0000	4.0973	0.0000	0.0000	4.0973
6	top gas from Venturi 1	0.0000	0.0000	0.0000	0.0006	0.0006
7	Iron Ore	100.0000	4.0973	0.0000	0.0000	4.0973
8	Top Gas to Steam boiler	0.0000	0.0000	0.0000	0.0006	0.0006
9	Coal	100.0000	1.2320	0.0000	0.0000	1.2320
10	Oxygen	0.0000	0.0000	0.0000	0.0013	0.0013
	Top gas recycled	0.0000	0.0000	0.0000	0.0003	0.0003
12	Iron Ore Feed to Gasifier	100.0000	4.0873	0.0000	0.0000	4.0873
	Air for Classifier	0.0000	0.0000	0.0000	0.0012	0.0012
14	Compressed Air	0.0000	0.0000	0.0000	0.0012	0.0012
18	Iron Ore to Cyclone 2	23.8103	3.2831	0.0000	0.0003	0.0003
19	Air to Cyclone 2	0.0000	0.0000	0.0000	0.0003	0.0003
20	Air to Calciner	0.0000	0.0000	0.0000	0.0012	0.0012
21	Combustion Air to Heater 2	0.0000	0.0000	0.0000	0.0012	0.0012
22	Natural gas to Heater 2	0.0000	0.0000	0.0000	0.0006	0.0006
23	Exhaust from Heater 2	0.0000	0.0000	0.0000	0.0004	0.0004
24	Preheated Reformed gas for CFB	0.0000	0.0000	0.0000	0.0000	0.0000
25	Reducing gas for CFB	0.0000	0.0000	0.0000	0.0003	0.0003
26	Natural gas for Heater 1	0.0000	0.0000	0.0000	0.0006	0.0006
	Combustion Air for Heater 1	0.0000	0.0000	0.0000	0.0012	0.0012
28	Exhaust for Heater 1	0.0000	0.0000	0.0000	0.0003	0.0003
29	Partially Reduced Ore	100.0000	3.3063	0.0000	0.0000	3.3063
	Top gas	0.0000	0.0000	0.0000	0.0003	0.0003
31	Recycle solids	100.0000	3.3063	0.0000	0.0000	3.3063
33	Clean cool top gas	0.0000	0.0000	0.0000	0.0007	0.0007
34	Dry top gas	0.0000	0.0000	0.0000	0.0007	0.0007
35	35	0.0000	0.0000	0.0000	0.0000	0.0000
36	Cold top gas	0.0000	0.0000	0.0000	0.0007	0.0007
37	Reducing gas from BB	0.0000	0.0000	0.0000	0.0003	0.0003
38	Partially Reduced Fines	100.0000	3.3063	0.0000	0.0000	3.3063
39	Top Gas with Fines	0.0000	0.0000	0.0000	0.0003	0.0003
40	CO2	0.0000	0.0000	0.0000	0.0011	0.0011
41	Cold Recycle gas	0.0000	0.0000	0.0000	0.0007	0.0007
42	Recycle gas for BB	0.0000	0.0000	0.0000	0.0003	0.0003
43	Recycle gas for CFB	0.0000	0.0000	0.0000	0.0003	0.0003
	Recycle gas for Gasifier	0.0000	0.0000	0.0000	0.0003	0.0003
	Water	0.0000	0.0000	0.9971	0.0000	0.9971
46	Steam	0.0000	0.0000	0.8401	0.0000	0.8401
47	DRI	100.0000	7.6755			7.6755
48	Char and Ash	100.0000			0.0000	1.6874
49	Water	0.0000		0.8234	0.0000	0.8234
50	Reduced Iron	100.0000	3.4436	0.0000	0.0000	3.4436

SOL	IDS - MT/HR					
	STREAM +	Fe2O3	Fe304	FeO	Fe1	Si102
1	Iron Ore to Lockhopper Char Additive Iron Ore from Lockhopper Dried Iron Ore Iron Ore Coal Iron Ore Feed to Gasifier Iron Ore from Cyclone 2 Feed to CFB Iron Ore Recycle Iron Ore to Cyclone 2 Partially Reduced Ore Recycle solids Partially Reduced Fines DRI Char and Ash Reduced Iron	101.124	918.222	0.000	0.000	11.7229
2	Char	0.000	0.000	0.000	0.000	19.0000
3	Additive	0.000	0.000	0.000	0.000	0.0000
4	Iron Ore from Lockhopper	101.124	918.222	0.000	. 0.000	30.7229
5	Dried Iron Ore	101.124	918.222	0.000	0.000	30.7229
7	Iron Ore	101.124	918.222	0.000	0.000	30.7229
10	Tran One Food to Conificat	0.000	0.000	0.000	0.000	12.4000
12	Tron Ore from Cyalone 2	101.124	924.355	3.844	0.000	31.1585
16	Feed to CFR	02 025	918.22/	0.000	0.000	11.7230
17	Trop Ore Recycle	27 675	753.001	0.000	0.000	3.6248
18	Iron Ore to Cyclone 2	101.124	924 355	3 844	0.000	3.2003
29	Partially Reduced Ore	0.000	607.128	380 590	0.000	43.3363
31	Recycle solids	0.000	6.133	3.844	0.000	0.4356
38	Partially Reduced Fines	0.000	6.133	3.844	0.000	0.4356
47	DRI	0.000	0.000	46.815	691.412	0.0000
48	Char and Ash	0.000	0.000	0.473	6.984	43.1229
50	Reduced Iron	0.000	0.000	47.288	698.396	43.1229
SOL	IDS - MT/HR			,		
NO.	STREAM		P1	Cu1	Ca101	Ma 101
	STREAM +	+	+	+	t	+
1	Iron Ore to Lockhopper	8.87436	0.66832	0.39442	7.7788	31.9915
- 3	Additive Iron Ore from Lockhopper	0.00000	0.00000	0.00000	50.0000	0.0000
4	Tron Ure from Locknopper	8.87436	0.66832	0.39442	57.7788	31.9915
7	Dried Iron Ore Iron Ore	8.87436	0.66832	0.39442	57.7788	31.9915
12	Iron Ore Feed to Gasifier	8.87436	0.65632	0.33442	51.//88	31.9915
15	Iron Ore from Cyclone 2	8 87441	0.67307	0.33640	7 7799	32.314/
16	Feed to CFB	7.28605	0.54870	0.33772	6 3865	26 2658
17	Iron Ore from Cyclone 2 Feed to CFB Iron Ore Recycle	2.42868	0.18290	0.10794	2.1288	8.7553
18	Iron Ore to Cyclone 2	8.96400	0.67507	0.39840	58.3624	32.3147
29	Iron Ore to Cyclone 2 Partially Reduced Ore	8.96400 8.87436	0.66832	0.39442	57.7788	31.9915
		U U8 0 E V	0 00075	0 00200	U EOSC	0 2221
38	Partially Reduced Fines	0.08964	0.00675	0.00398	0.5836	0.3231
48	Partially Reduced Fines Char and Ash	8.87436	0.66832	0.39442	57.7788	31.9915
50	Reduced Iron	8.87436	0.66832	0.39442	57.7788	31.9915
SOL	IDS - MT/HR					
NO.	STREAM	Ti102	S1	V1	Co1	Ni1
	Tana One to Tankhana					+
1	Iron Ore to Lockhopper Iron Ore from Lockhopper	12.0516	0.32868	0.71214	0.28486	0.32868
	Dried Iron Ore	12.0516	0.32858	0.71214	0.28486	0.32868
	Iron Ore	12.0516	0.32868	0.71214	0.28486	0.32868
	Iron Ore Feed to Gasifier					0.32868
	Iron Ore from Cyclone 2	12 17 17 17	0.33200	0.71333	0.20113	0.33200 0.32868
	Feed to CFB	9 8946	0.32000	0.71214	0.20400	0.32888
	Iron Ore Recycle	3.2982	0.08995	0.30489	0.23387	0.08995
	Iron Ore to Cyclone 2	12.1733	0.33200	0.71933	0.28773	0.33200
	Partially Reduced Ore	12.0516	0.32868	0.71214	0.28486	0.32868
31	Recycle solids					0.00332
38	Partially Reduced Fines	0.1217	0.00332	0.00719	0.00288	0.00332
48	Char and Ash	12.0516	0.32868	0.71214	0.28486	0.32868
50	Reduced Iron	12.0516	0.32868	0.71214	0.28486	0.32868

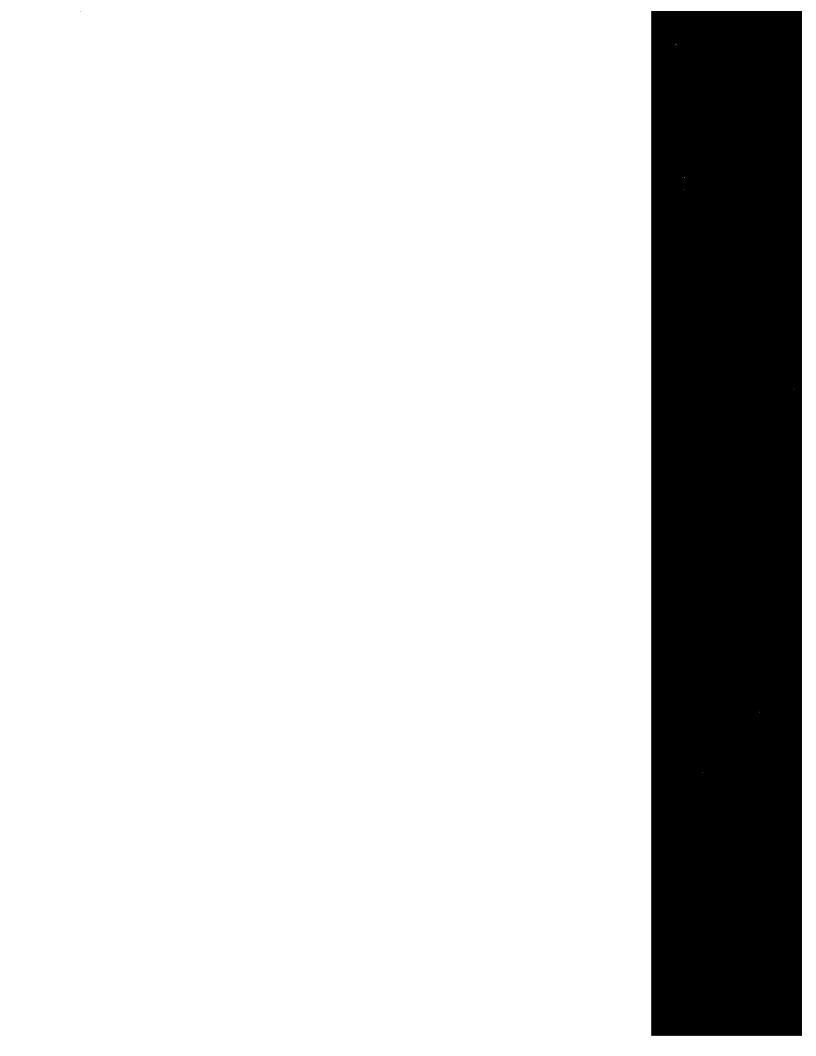
SOLIDS - MT/HR NO. STREAM			Ca1C1O3		C5H8
1 Iron Ore to Lockhopper 2 Char 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 9 Coal 12 Iron Ore Feed to Gasifier	0.44920 0.00000 0.44920 0.44920 0.00000 0.45373 0.44920 0.36880	0.66832 0.00000 0.66832 0.66832 0.00000 0.67507 0.66832 0.54870	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 173.600 173.600 173.600 173.600 114.000 175.064 0.000 0.000	0.0000 7.4000 7.4000 7.4000 7.4000 73.6000 8.2182 0.0000 0.0000
SOLIDS - WEIGHT PERCENT NO. STREAM	Fe203	Fe304	FeO	Fe1	Si102
1 Iron Ore to Lockhopper 2 Char 3 Additive 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 9 Coal 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 31 Recycle solids 38 Partially Reduced Fines 47 DRI	9.23000 0.00000 7.51515 7.51515 0.00000 7.43858 9.23000 9.23000 7.13741 0.00000 0.00000 0.00000 0.00000	83.8100 0.0000 68.2389 68.2389 0.0000 67.9947 83.8100 83.8100 83.8100 65.2418 44.2728 44.2728 44.2728 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2828 0.0000 0.0000 0.2713 27.7532 27.7532 27.7532 6.3416	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.0700 9.5000 0.0000 2.2832 2.2832 6.2000 2.2920 1.0700 1.0700 3.0744 3.1446 3.1446 0.0000 11.0268
SOLIDS - WEIGHT PERCENT NO. STREAM	A1203	P1	Cu1	Ca101	
1 Iron Ore to Lockhopper 3 Additive 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 31 Recycle solids 38 Partially Reduced Fines 48 Char and Ash 50 Reduced Iron	0.00000 0.65951 0.65951 0.65938 0.81000 0.81000 0.81000 0.63269 0.64713 0.64713 2.26923	0.06100	0.03600 0.00000 0.02931 0.02931 0.02931 0.03600 0.03600 0.03600 0.02812 0.02876 0.02876 0.02876	0.710 100.000 4.294 4.294 4.293 0.710 0.710 0.710 4.119 4.213 4.213 4.213 14.774	2.92000

SOLIDS - WEIGHT PERCENT NO. STREAM			Sı			
1 Iron Ore to Lockhopper 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 31 Recycle solids 38 Partially Reduced Fines 48 Char and Ash 50 Reduced Iron		1.10000 0.89563 0.89563 0.89563	0.03000 0.02443 0.02443 0.02443	0.06500 0.05292 0.05292 0.05292	0.02600 0.02117 0.02117 0.02117	0.03000 0.02443 0.02443 0.02443
SOLIDS - WEIGHT PERCENT NO. STREAM		Zn1	Pb1	Ca1C103	C	C5H8
7 Iron Ore 9 Coal 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore		0.04100 0.00000 0.03338 0.03338 0.00000 0.03338 0.04100 0.04100 0.04100 0.03202 0.03276	0.06100 0.00000 0.04967 0.04967 0.00000 0.04966 0.06100 0.06100 0.04765 0.04873	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.0000 86.8000 12.9013 12.9013 57.0000 12.8776 0.0000 0.0000 10.3349 10.5709	0.0000 3.7000 0.5499 0.5499 0.5499 36.8000 0.6045 0.0000 0.0000 0.0000 5.7748 5.9067
AQUEOUS - MT/HR NO. STREAM		H2O				
1 Iron Ore to Lockhopper 4 Iron Ore from Lockhopper 45 Water 46 Steam 49 Water		95.30 95.30 1379.75 1379.75 95.30				
AQUEOUS - WEIGHT PERCENT NO. STREAM		H2O	·			· ·
1 Iron Ore to Lockhopper 4 Iron Ore from Lockhopper 45 Water 46 Steam 49 Water		100.000 100.000 100.000 100.000 100.000				
AQUEOUS - GRAMS PER LITER NO. STREAM	• • • • · · ·	H2O				
1 Iron Ore to Lockhopper 4 Iron Ore from Lockhopper 45 Water 46 Steam 49 Water		995.067 995.139 997.116 840.126 823.392				

	COUS - MT/HR					
NO.	top gas from Venturi 1 Top Gas to Steam boiler Oxygen Top gas recycled Air for Classifier Compressed Air Iron Ore to Cyclone 2 Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Reducing gas for CFB Natural gas for Heater 1 Combustion Air for Heater 1 Top gas Clean cool top gas Dry top gas Clean cool top gas Dry top gas Reducing gas from BB Top Gas with Fines CO2 Cold Recycle gas Recycle gas for CFB Recycle gas for Gasifier EOUS - MT/HR	H2O	N2	02	C1H4	C102
6	top gas from Venturi 1	190.600	0.00	0.00	67.000	760.372
8	Top Gas to Steam boiler	190.600	0.00	0.00	67.000	760.372
10	Oxygen	0.000	0.00	190.00	0.000	0.000
11	Top gas recycled	95.300	0.00	0.00	67.000	760.372
13	Air for Classifier	0.000	0.7 <i>7</i>	0.23	0.000	0.000
14	Compressed Air	0.000	0.77	0.23	0.000	0.000
18	Iron Ore to Cyclone 2	32.402	0.00	0.00	22.780	2.585
19	Air to Cyclone 2	0.000	2.19	0.66	0.000	0.000
20	Air to Calciner	0.000	0.77	0.23	0.000	0.000
21	Combustion Air to Heater 2	0.000	3215.82	971.45	0.000	0.000
22	Natural gas to heater 2	0.000	0.00	0.00	205.467	0.000
2.5	Exhaust from Heater 2	461.454	3215.82	151.81	0.000	563.647
25	Natural das for Woater 1	95.300	0.00	0.00	67.000	7.604
27	Combustion Air for Heater 1	0.000	2025 25	1000 10	232.321	0.000
28	Exhaust for Heater 1	521 764	3632.33	1098.18	0.000	0.000
30	Top das	95 300	3033.33	1/1.42	67 000	750 272
33	Clear cool top gas	190 600	0.00	0.00	67.000	760.372
34	Dry top gas	95.300	0.00	0.00	67.000	760.372
36	Cold top gas	190.600	0.00	0.00	67.000	760.372
37	Reducing gas from BB	31.449	0.00	0.00	22.110	668.277
39	Top Gas with Fines	95.300	0.00	0.00	67 000	760.372
40	CO2	0.000	0.00	0.00	0.000	752.769
41	Cold Recycle gas	95.300	0.00	0.00	67.000	7.604
42	Recycle gas for BB	31.449	0.00	0.00	22.110	2.509
. 43	Recycle gas for CFB	31.449	0.00	0.00	22.110	2.509
44	Recycle gas for Gasifier	32.402	0.00	0.00	22.780	2.585
GASI	EOUS - MT/HR					
NO.	STREAM	HЭ				
- -	top gas from Venturi 1 Top Gas to Steam boiler Top gas recycled Iron Ore to Cyclone 2 Preheated Reformed gas for CFB Reducing gas for CFB Top gas Clean cool top gas Dry top gas 35 Cold top gas Reducing gas from BB Top Gas with Fines Cold Recycle gas Recycle gas for BB Recycle gas for CFB Recycle gas for Gasifier	0 00	12105 0			
8	Top Gas to Steam boiler	0.00	12103.3			
11	Top gas recycled	0.00	12105.5			
18	Iron Ore to Cyclone 2	0.00	4475.8			
24	Preheated Reformed gas for CFB	694.98	77.2			
25	Reducing gas for CFB	0.00	12185.9			
30	Top gas	0.00	12039.4			
33	Clean cool top gas	0.00	12185.9			
34	Dry top gas	0.00	12185.9		•	
35	35	1411.02	156.8			
- 36	Cold top gas	0.00	12185.9			
37	Reducing gas from BB	0.00	3597.6			
39	rop Gas With Fines	0.00	12039.4			
41	Pagualo gas for PP	0.00	12185.9			
42	Recycle gas for CFR	0.00	4021.3			
44	Recycle das for Gasifier	0.00	4142 2			
7.3	gab IoI Gabiliei	0.00	4143.2			

GASE	EOUS - WEIGHT PERCENT					
NO.	STREAM	H2O	N2	02	C1H4	C102
6	top gas from Venturi 1	1.4435	0.0000	0.000	0.507	5.759
8	Top Gas to Steam boiler	1.4435	0.0000	0.000	0.507	5.759
10	Oxygen	0.0000	0.0000	100.000	0.000	0.000
11	Top gas recycled	0.7270	0.0000	0.000	0.511	5.801
13	Air for Classifier	0.0000	76.8000	23.200	0.000	0.000
14	Compressed Air	0.0000	76.8000	23.200	0.000	0.000
18	Iron Ore to Cyclone 2	0.7147	0.0000	0.000	0.502	0.057
19	Air to Cyclone 2	0.0000	76.8000	23.200	0.000	0.000
20	Air to Calciner	0.0000	76.8000	23.200	0.000	0.000
21	Combustion Air to Heater 2	0.0000	76.8000	23.200	0.000	0.000
22	Natural gas to Heater 2	0.0000	0.0000	0.000	100.000	0.000
23	Exhaust from Heater 2	10.5049	73.2077	3.456	0.000	12.831
25	Reducing gas for CFB	0.7713	0.0000	0.000	0.542	0.062
26	Natural gas for Heater 1	0.0000	0.0000	0.000	100.000	0.000
27	Combustion Air for Heater 1	0.0000	76.8000	23.200	0.000	0.000
28	Exhaust for Heater 1	10.5070	73.2070	3.452	0.000	12.834
30	Top gas	0.7352	0.0000	0.000	0.517	5.866
33	Clean cool top gas	1.4435	0.0000	0.000	0.507	5.759
34	Dry top gas	0.7270	0.0000	0.000	0.511	5.801
36	Cold top gas	1.4435	0.0000	0.000	0.507	5.759
37	Reducing gas from BB	0.7281	0.0000	0.000	0.512	15.471
39	Top Gas with Fines	0.7352	0.0000	0.000	0.517	5.866
40	CO2	0.0000	0.0000	0.000	0.000	100.000
41	Cold Recycle gas	0.7713	0.0000	0.000	0.542	0.062
42	Recycle gas for BB	0.7713	0.0000	0.000	0.542	0.062
43	Recycle gas for CFB	0.7713	0.0000	0.000	0.542	0.062
4 4	top gas from Venturi 1 Top Gas to Steam boiler Oxygen Top gas recycled Air for Classifier Compressed Air Iron Ore to Cyclone 2 Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Exhaust from Heater 2 Exhaust from Heater 2 Reducing gas for CFB Natural gas for Heater 1 Combustion Air for Heater 1 Top gas Clean cool top gas Dry top gas Cold top gas Reducing gas from BB Top Gas with Fines CO2 Cold Recycle gas Recycle gas for CFB Recycle gas for Gasifier EOUS - WEIGHT PERCENT	0.7713	0.0000	0.000	0.542	0.062
GASI	EOUS - WEIGHT PERCENT					
NO.	STREAM	H2	CO			
	top gas from Venturi 1 Top Gas to Steam boiler Top gas recycled Iron Ore to Cyclone 2 Preheated Reformed gas for CFB Reducing gas for CFB Top gas Clean cool top gas Dry top gas 35 Cold top gas Reducing gas from BB Top Gas with Fines Cold Recycle gas Recycle gas for BB Recycle gas for Gasifier	+	+ -			
b	Top Gas to Chambaile	0.0000	92.2903			
	Top Gas to Steam Doller	0.0000	92.2903			
11	Trop Ore to Cyclene 3	0.0000	92.9613			
24	Prohosted Pefermed ass for CER	0.0000	98.7258			
25	Poducing are for CFB	30.0000	10.0000			
30	Top gas	0.0000	98.6249			
33	Clean cool ton dag	0.0000	92.0010			
34	Dry top gas	0.0000	02 0013			
35	35	0.0000	10 0000			
36	Cold top gas	0.0000	10.0000			
37	Reducing gas from BB	0.0000	83 2882			
39	Top Gas with Fines	0.0000	92 8810			
41	Cold Recycle gas	0.0000	25.0010			
42	Recycle gas for BB	0.0000	98 6249			
43	Recycle gas for CFB	0.0000	98 6249			
44	Recycle gas for Gasifier	0.0000	98.6249			
	.7		20.0273			

GASI	EOUS - VOLUME PERCENT					
NO.	STREAM	H2O	N2	02	C1H4	C102
	top gas from Venturi 1	2.2651	0 0000	0 000	⊦ + 1.00 ∩	3 500
8	Top Gas to Steam boiler	2.2651	0.0000	0.000	0.894	3 5 9 9
10	Oxygen	0.0000	0.0000	100.000	0.000	0.000
11	Top gas recycled	1.1455	0.0000	0.000	0.904	3.741
13	Air for Classifier	0.0000	79.0852	20.915	0.000	0.000
14	Compressed Air	0.0000	79.0852	20.915	0.000	0.000
18	Iron Ore to Cyclone 2	1.1030	0.0000	0.000	0.871	0.036
19	Air to Cyclone 2	0.0000	79.0852	20.915	0.000	0.000
20	Air to Calciner	0.0000	79.0852	20.915	0.000	0.000
21	Combustion Air to Heater 2	0.0000	79.0852	20.915	0.000	0.000
22	Natural gas to Heater 2	0.0000	0.0000	0.000	100.000	0.000
23	Exhaust from Heater 2	16.2156	72.6731	3.003	0.000	8.108
25	Reducing gas for CFB	1.1896	0.0000	0.000	0.939	0.039
26	Natural gas for Heater 1	0.0000	0.0000	0.000	100.000	0.000
27	Combustion Air for Heater 1	0.0000	79.0852	20.915	0.000	0.000
28	Exhaust for Heater 1	16.2188	72.6719	3.000	0.000	8.109
30	Top gas	1.1587	0.0000	0.000	0.915	3.784
21	Crean coor top gas	2.2651	0.0000	0.000	0.894	3.699
36	Cold top gas	1.1455	0.0000	0.000	0.904	3.741
37	Reducing ass from RR	1 1000	0.0000	0.000	0.894	3.699
39	Top Gas with Fines	1.1030	0.0000	0.000	0.939	10.348
40	CO2	0.0000	0.0000	0.000	0.313	3./04
41	Cold Recycle das	1 1896	0.0000	0.000	0.000	0.000
42	Recycle gas for BB	1.1896	0.0000	0.000	0.333	0.033
43	Recycle gas for CFB	1.1896	0.0000	0.000	0.939	0.033
44	top gas from Venturi 1 Top Gas to Steam boiler Oxygen Top gas recycled Air for Classifier Compressed Air Iron Ore to Cyclone 2 Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Reducing gas for CFB Natural gas for Heater 1 Combustion Air for Heater 1 Top gas Clean cool top gas Dry top gas Cold top gas Reducing gas from BB Top Gas with Fines CO2 Cold Recycle gas Recycle gas for CFB Recycle gas for Gasifier EOUS - VOLUME PERCENT	1.1896	0.0000	0.000	0.939	0.039
GASI	EOUS - VOLUME PERCENT					
NO.	STREAM	Н2	CO			
	+	+	+-			
6	top gas from Venturi 1 Top Gas to Steam boiler Top gas recycled Iron Ore to Cyclone 2 Preheated Reformed gas for CFB	0.0000	93.1418			
8	Top Gas to Steam boiler	0.0000	93.1418			
11	Top gas recycled	0.0000	94.2087		\$-	
18	Iron Ore to Cyclone 2	0.0000	97.9903		٠	
24	Preneated Reformed gas for CFB	99.2067	0.7933			
20	Reducing gas for CFB	0.0000	97.8324			
33	Clean gool ton gag	0.0000	94.1424		* 7	
34	Dry top gas	0.0000	93.1418			
35	ar	0.0000	0 7022			
36	Cold top gas	0 0000	93 1/19			
37	Reducing gas from BB	0.0000	87 5237			-
39	Top Gas with Fines	0.0000	94.1424			
41	Cold Recycle gas	0.0000	97.8324			
42	Recycle gas for BB	0.0000	97.8324			
43	Recycle gas for CFB	0.0000	97.8324			
44	Preheated Reformed gas for CFB Reducing gas for CFB Top gas Clean cool top gas Dry top gas 35 Cold top gas Reducing gas from BB Top Gas with Fines Cold Recycle gas Recycle gas for BB Recycle gas for CFB Recycle gas for Gasifier	0.0000	97.8324			


SOLIDS - MT MOLES/HR					
NO. STREAM	Fe2O3	Fe304	FeO	Fe1	Si102
1 Iron Ore to Lockhopper 2 Char 3 Additive 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 9 Coal 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 31 Recycle solids 38 Partially Reduced Fines 47 DRI 48 Char and Ash 50 Reduced Iron	0.63324 0.00000 0.00000 0.63324 0.63324 0.63324 0.63325 0.51991 0.17330 0.63324 0.00000 0.00000	3.96574 0.00000 0.00000 3.96574 3.96574 0.00000 3.99223 3.96576 3.25596 1.08532 3.99223 2.62215 0.02649	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05351 5.29727 0.05351	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.19511 0.31622 0.00000 0.51133 0.51133 0.51133 0.20637 0.51858 0.19511 0.16019 0.05340 0.72495 0.71770 0.00725
	0.00000	0.00000	0.65819	12.5055	0.71770
SOLIDS - MT MOLES/HR NO. STREAM	A1203	P1	Cu1	Ca101	Mg101
1 Iron Ore to Lockhopper 3 Additive 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 31 Recycle solids 38 Partially Reduced Fines 48 Char and Ash 50 Reduced Iron SOLIDS - MT MOLES/HR	0.08704 0.00000 0.08704 0.08704 0.08792 0.08704 0.07146 0.02382 0.08792 0.08704 0.00088 0.0088 0.08704	0.02158 0.00000 0.02158 0.02158 0.02179 0.02158 0.01772 0.00591 0.02179 0.02158 0.00022 0.00022 0.02158 0.02158	0.00621 0.00000 0.00621 0.00621 0.00627 0.00621 0.00510 0.00170 0.00627 0.00621 0.0006 0.00060 0.00621	0.13871 0.89159 1.03030 1.03030 1.03030 1.04071 0.13871 0.11388 0.03796 1.04071 1.03030 0.01041 0.01041 1.03030 1.03030	0.79361 0.00000 0.79361 0.79361 0.80163 0.79361 0.65157 0.21719 0.80163 0.79361 0.00802 0.00802 0.79361 0.79361
+	+	+	+	Co1 +	Ni1 +
1 Iron Ore to Lockhopper 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 31 Recycle solids 38 Partially Reduced Fines 48 Char and Ash 50 Reduced Iron	0.15084 0.15084 0.15236 0.15084 0.12384 0.04128 0.15236 0.15084 0.00152 0.00152 0.15084	0.01025 0.01025 0.01025 0.01035 0.01025 0.00842 0.00281 0.01035 0.01025 0.00010 0.00010	0.01398 0.01398 0.01398 0.01412 0.01398 0.01148 0.00383 0.01412 0.01398 0.00014 0.00014	0.00483 0.00483 0.00488 0.00483 0.00397 0.00132 0.00488 0.00483 0.00005 0.00005	0.00560 0.00560 0.00565 0.00560 0.00460 0.00153 0.00565 0.00560

SOLIDS - MT MOLES/HR NO. STREAM	Zn1	Pb1	Ca1C1O3	С	C5H8
<pre>1 Iron Ore to Lockhopper 2 Char 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 9 Coal 12 Iron Ore Feed to Gasifier</pre>	0.00687 0.00000 0.00687 0.00687 0.00687 0.00687 0.00564 0.00564 0.00687 0.00687	0.00323 0.00000 0.00323 0.00323 0.00323 0.00000 0.00326 0.00325 0.00326 0.00326 0.00323	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.0000 14.4532 14.4532 14.4532 14.4532 9.4912 14.5751 0.0000 0.0000 0.0000 12.1909 12.0690 0.1219	0.00000 0.10863 0.10863 0.10863 1.08045 0.12064 0.00000 0.00000 0.00000 1.20110 1.18909 0.01201
SOLIDS - MOLE PERCENT NO. STREAM	Fe2O3	Fe304	FeO	Fe1	Si102
1 Iron Ore to Lockhopper 2 Char 3 Additive 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 9 Coal 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2	10.4897 0.0000 2.9039 2.9039 0.0000 2.8719 10.4897 10.4897 3.0224 0.0000 0.0000 0.0000 0.0000	65.6925 0.0000 18.1860 18.1860 0.0000 18.1060 65.6925 65.6925 19.0544 10.9122 10.9122 10.9122 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2427 0.0000 0.0000 0.2554 22.0448 22.0448 22.0448 5.0000 0.0405	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	3.23193 2.12541 0.00000 2.34483 2.34483 1.91478 2.35190 3.23193 3.23193 3.23193 3.46009 2.98675 2.98675 0.00000 4.41887
SOLIDS - MOLE PERCENT NO. STREAM	Al203	P1	Cu1	Ca101	Mg101
1 Iron Ore to Lockhopper 3 Additive 4 Iron Ore from Lockhopper 5 Dried Iron Ore 7 Iron Ore 12 Iron Ore Feed to Gasifier 15 Iron Ore from Cyclone 2 16 Feed to CFB 17 Iron Ore Recycle 18 Iron Ore to Cyclone 2 29 Partially Reduced Ore 31 Recycle solids 38 Partially Reduced Fines 48 Char and Ash 50 Reduced Iron	1.44176 0.00000 0.39913 0.39913 0.39873 1.44176 1.44176 0.41961 0.36221 0.36221 0.36221	0.35742 0.00000 0.09895 0.09895 0.09885 0.35742 0.35742 0.35742 0.10402 0.08979 0.08979 0.13285	0.10282	2.298 100.000 4.725 4.725 4.725 4.720 2.298 2.298 4.967 4.288 4.288 4.288 6.344	13.1461 0.0000 3.6393 3.6393 3.6356 13.1461 13.1461 3.8260 3.3026 3.3026 4.8862

	IDS - MOLE PERCENT STREAM +	Ti102	S1	V1	Co1	Ni1
1	Trop Ore to Lockhopper	2 40050	0 10000	0 00157	0 00000	0 000-4
4	Iron Ore from Lockhopper	0.69170	0.04701	0.06411	0.02217	0.02567
5	Iron Ore from Lockhopper Dried Iron Ore	0.69170	0.04701	0.06411	0.02217	0.02567
7.	iron Ore	0.69170	0.04701	0.06411	0.02217	0.02567
12	Iron Ore Feed to Gasifier	0.69100	0.04696	0.06404	0.02214	0.02565
15	Iron Ore Feed to Gasifier Iron Ore from Cyclone 2	2.49859	0.16980	0.23157	0.08007	0.09274
16	Feed to CFB	2.49859	0.16980	0.23157	0.08007	0.09274
17	Iron Ore Recycle		_			
18	Iron Ore Recycle Iron Ore to Cyclone 2 Partially Reduced Ore Recycle solids	0.72719	0.04942	0.06740	0.02330	0.02699
29	Partially Reduced Ore	0.62771	0.04266	0.05818	0.02012	0.02330
31	Recycle solids Partially Reduced Fines	0.62771	0.04266	0.05818	0.02012	0.02330
38	Partially Reduced Fines	0.62771	0 04266	0.05818	0 02012	0 02220
48	Char and Ash	0.92869	0.06311	0.08607	0.02976	0.03447
50	Reduced Iron	0.51526	0.03502	0.04775	0.01651	0.01912
NO.	IDS - MOLE PERCENT STREAM +	Zn1	Pb1	Ca1C1O3	C	C5H8
1	Iron Ore to Lockhopper Char Iron Ore from Lockhopper Dried Iron Ore Iron Ore	0.11381	0.05343	0.00000	0.0000	0.0000
2	Char	0.00000	0.00000	0.00000	97.1444	0.7302
4	Iron Ore from Lockhopper	0.03151	0.01479	0.00000	66.2795	0.4982
5	Dried Iron Ore	0.03151	0.01479	0.00000	66.2795	0.4982
7	Iron Ore					
9	Coal	0.00000	0.00000	0.00000	88.0606	10.0246
12	Iron Ore Feed to Gasifier	0.03147	0.01478	0.00000	66.1027	0.5472
15	Iron Ore from Cyclone 2	0.11381	0.05343	0.00000	0.0000	0.0000
16	Feed to CFB	0.11381	0.05343	0.00000	0.0000	0.0000
17	Iron Ore Recycle	0.11381	0.05343	0.00000	0.0000	0.0000
18	Iron Ore to Cyclone 2	0.03312	0.01555	0.00000	58.1854	5.7327
29	Partially Reduced Ore	0.02859	0.01342	0.00000	50.2256	4.9484
31	Iron Ore Feed to Gasifier Iron Ore from Cyclone 2 Feed to CFB Iron Ore Recycle Iron Ore to Cyclone 2 Partially Reduced Ore Recycle solids	0.02859	0.01342	0.00000	50.2256	4.9484
38	Partially Reduced Fines	0.02859	0.01342	0.00000	50.2256	4.9484
48						
	Char and Ash Reduced Iron	0.04230	0.01986	0.00000	74.3084	7.3212

GASI	EOUS - MT MOLES/HR	_				
NO.	STREAM	H2O	N2	02	C1H4	C102
6	top gas from Venturi 1 Top Gas to Steam boiler Oxygen Top gas recycled Air for Classifier Compressed Air Iron Ore to Cyclone 2	10.5799	0.000	0.0000	4.1763	17.2773
8	Top Gas to Steam boiler	10.5799	0.000	0.0000	4.1763	17,2773
10	Oxygen	0.0000	0.000	5.9377	0.0000	0.0000
11	Top gas recycled	5.2899	0.000	0.0000	4.1763	17.2773
13	Air for Classifier	0.0000	0.027	0.0073	0.0000	0.0000
14	Compressed Air	0.0000	0.027	0.0073	0.0000	0.0000
18	Compressed Air Iron Ore to Cyclone 2 Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Reducing gas for CFB Natural gas for Heater 1 Combustion Air for Heater 1	1.7986	0.000	0.0000	1.4199	0.0587
19	Air to Cyclone 2	0.0000	0.078	0.0207	0.0000	0.0000
20	Air to Calciner	0.0000	0.027	0.0073	0.0000	0.0000
21	Combustion Air to Heater 2	0.0000	114.796	30.3588	0.0000	0.0000
22	Natural gas to Heater 2	0.0000	0.000	0.0000	12.8073	0.0000
23	Exhaust from Heater 2	25.6145	114.796	4.7443	0.0000	12.8073
25	Reducing gas for CFB	5.2899	0.000	0.0000	4.1763	0.1728
26	Natural gas for Heater 1	0.0000	0.000	0.0000	14.4811	0.0000
27	Combustion Air for Heater 1	0.0000	129.772	34.3194	0.0000	0.0000
28	Exhaust for heater 1	28.9622	129.772	5.3572	0.0000	14.4811
30	Class and ten mag	5.2899	0.000	0.0000	4.1763	17.2773
37	Dry top gas	10.5799	0.000	0.0000	4.1763	17.2773
3.5	Cold top gas	10 5700	0.000	0.0000	4.1763	17.2773
37	Reducing gas from BB	1 7/57	0.000	0.0000	4.1/63	17.2773
. 39	Ton Gas with Fines	E 2000	0.000	0.0000	1.3/82	15.184/
40	CO2	0.0000	0.000	0.0000	4.1/63	17.2//3
41	Cold Recycle gas	5.2899	0.000	0.0000	4 1763	0 1720
42	Recycle gas for BB	1.7457	0.000	0.0000	1.3782	0.1728
43	Recycle gas for CFB	1.7457	0.000	0.0000	1.3782	0.0570
44	Natural gas for Heater 1 Combustion Air for Heater 1 Exhaust for Heater 1 Top gas Clean cool top gas Dry top gas Cold top gas Reducing gas from BB Top Gas with Fines CO2 Cold Recycle gas Recycle gas for BB Recycle gas for CFB Recycle gas for Gasifier	1.7986	0.000	0.0000	1.4199	0.0587
	EOUS - MT MOLES/HR					
	STREAM	H2	со			
	i		_			
6	top gas from Venturi 1 Top Gas to Steam boiler Top gas recycled Iron Ore to Cyclone 2 Preheated Reformed gas for CFB Reducing gas for CFB	0.000	435.046			
8	Top Gas to Steam boiler	0.000	435.046			
11	Top gas recycled	0.000	435.046			
18	Iron Ore to Cyclone 2	0.000	159.791			
24	Preheated Reformed gas for CFB	344.742	2.757			
25	Reducing gas for CFB Top gas Clean cool top gas Dry top gas 35 Cold top gas	0.000	435.046			
30	Top gas	0.000	429.817			
33	Clean cool top gas	0.000	435.046			
25	ory top gas	0.000	435.046			•
30	Cold top gag	699.932	5.597			
37	Reducing gas from BB	0.000	120 427			
39	Top Gas with Fines	0.000	120.43/			
41	Cold Recycle gas	0.000	443.011	•		
42	Recycle gas for BB	0.000	143 565			
43	Cold top gas Reducing gas from BB Top Gas with Fines Cold Recycle gas Recycle gas for BB Recycle gas for CFB Recycle gas for Gasifier	0.000	143.565			
44	Recycle gas for Gasifier	0.000	147.916			
	- *					

GASI	EOUS - MOLE PERCENT STREAM top gas from Venturi 1 Top Gas to Steam boiler Oxygen Top gas recycled Air for Classifier Compressed Air Iron Ore to Cyclone 2 Air to Cyclone 2 Air to Calciner Combustion Air to Heater 2 Natural gas to Heater 2 Exhaust from Heater 2 Exhaust from Heater 1 Combustion Air for Heater 1 Combustion Air for Heater 1 Exhaust for Heater 1 Top gas Clean cool top gas Dry top gas Cold top gas Reducing gas from BB Top Gas with Fines CO2 Cold Recycle gas Recycle gas for CFB Recycle gas for Gasifier EOUS - MOLE PERCENT	H2O	N2	02	C1H4	C102
6	top gas from Venturi 1	2.2651	0.0000	0.000	0.894	3.699
8	Top Gas to Steam boiler	2.2651	0.0000	0.000	0.894	3.699
10	Oxygen	0.0000	0.0000	100.000	0.000	0.000
11	Top gas recycled	1.1455	0.0000	0.000	0.904	3.741
13	Air for Classifier	0.0000	79.0852	20.915	0.000	0.000
14	Compressed Air	0.0000	79.0852	20.915	0.000	0.000
18	Iron Ore to Cyclone 2	1.1030	0.0000	0.000	0.871	0.036
19	Air to Cyclone 2	0.0000	79.0852	20.915	0.000	0.000
20	Air to Calciner	0.0000	79.0852	20.915	0.000	0.000
21	Combustion Air to Heater 2	0.0000	79.0852	20.915	0.000	0.000
22	Natural gas to Heater 2	0.0000	0.0000	0.000	100.000	0.000
23	Exhaust from Heater 2	16.2156	72.6731	3.003	0.000	8.108
25	Reducing gas for CFB	1.1896	0.0000	0.000	0.939	0.039
26	Natural gas for Heater 1	0.0000	0.0000	0.000	100.000	0.000
27	Combustion Air for Heater 1	0.0000	79.0852	20.915	0.000	0.000
28	Exhaust for Heater 1	16.2188	72.6719	3.000	0.000	8.109
30	Top gas	1.1587	0.0000	0.000	0.915	3.784
33	Clean cool top gas	2.2651	0.0000	0.000	0.894	3.699
34	ory top gas	1.1455	0.0000	0.000	0.904	3.741
36	Cold top gas	2.2651	0.0000	0.000	0.894	3.699
31	Top Cos with Fines	1.1896	0.0000	0.000	0.939	10.348
7.0	cos	1.1587	0.0000	0.000	0.915	3.784
41	Cold Peggale ass	1 7000	0.0000	0.000	0.000	100.000
42	Recycle gas	1 1000	0.0000	0.000	0.939	0.039
43	Recycle gas for CFR	1 1000	0.0000	0.000	0.939	0.039
44	Recycle gas for Gasifier	1.1896	0.0000	0.000	0.939	0.039
GAS:	EOUS - MOLE PERCENT					
NO.	STREAM +	H2	CO			
6	top gas from Venturi 1 Top Gas to Steam boiler Top gas recycled Iron Ore to Cyclone 2 Preheated Reformed gas for CFB	0.0000	93.1418			
8	Top Gas to Steam boiler	0.0000	93.1418			
11	Top gas recycled	0.0000	94.2087			
18	Iron Ore to Cyclone 2	0.0000	97.9903			
24	Preheated Reformed gas for CFB	99.2067	0.7933			
25	Reducing gas for CFB	0.0000	97.8324			
30	Top gas	0.0000	94.1424			
33	Clean cool top gas	0.0000	93.1418			
34	Dry top gas	0.0000	94.2087			
35	35	99.2067	0.7933			
36	Cold top gas	0.0000	93.1418			
37	Reducing gas from BB	0.0000	87.5237			
39	Top Gas with Fines	0.0000	94.1424		1	
41	Cold Recycle gas	0.0000	97.8324			
42	Recycle gas for BB	0.0000	97.8324			
43	Recycle gas for CFB	0.0000	97.8324			
44	Preheated Reformed gas for CFB Reducing gas for CFB Top gas Clean cool top gas Dry top gas 35 Cold top gas Reducing gas from BB Top Gas with Fines Cold Recycle gas Recycle gas for BB Recycle gas for CFB Recycle gas for Gasifier	0.0000	97.8324		•	

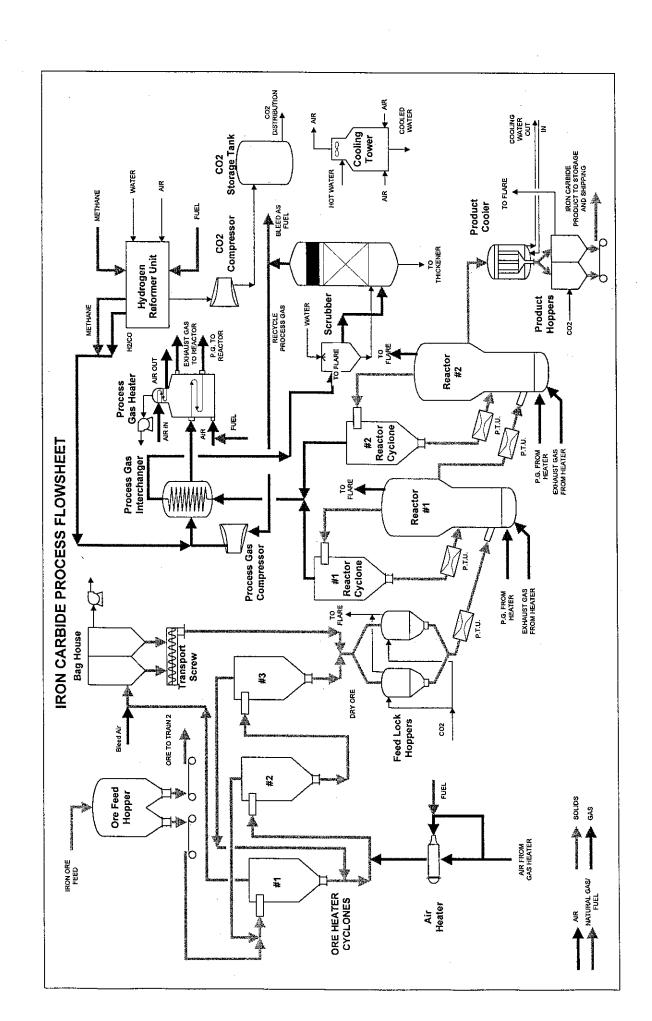
APPENDIX E-8: GENERIC IRON CARBIDE PROCESS

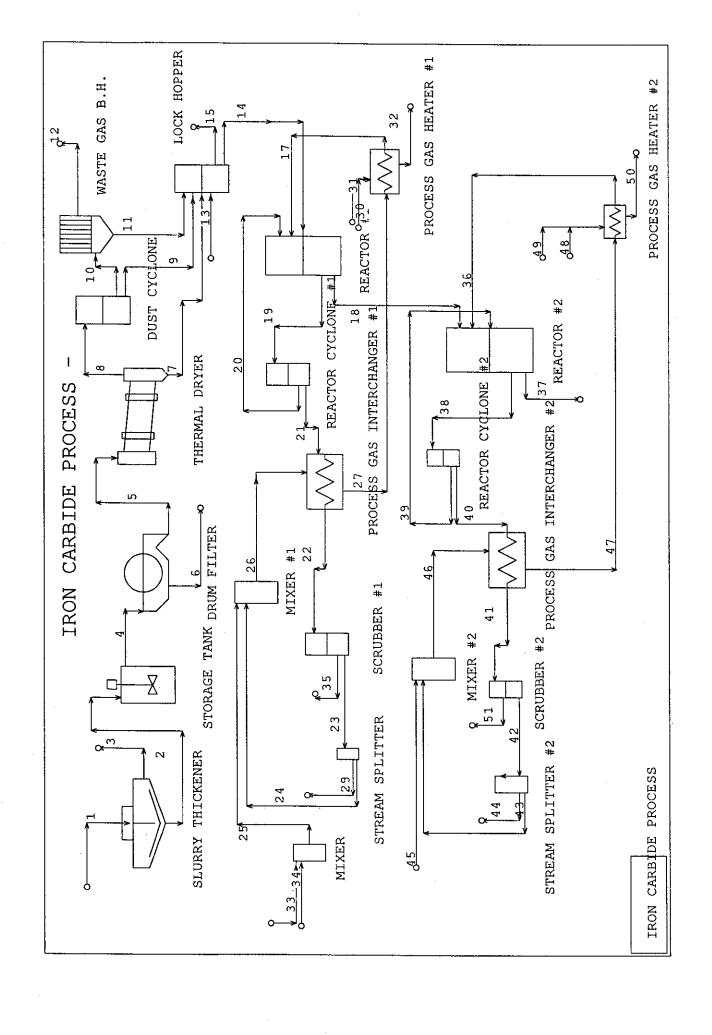
IRON CARBIDE PROCESS

PROCESS BACKGROUND:

Iron carbide (Fe3C) is a chemical compound of 94% iron and 6% carbon in pure form. It can be used as the only feed for BOFs and EAFs. In that role it eliminates the need for coke ovens and the blast furnace, and all the ancillary equipment for coal and lime. The Iron Carbide process is a two stage fluidized bed process that operates at a lower temperature than other DR processes. It operates at low pressures and uses steam reforming to produce the H2 which is mixed with CH4 to make the carburizing gas. It produces Fe3C powder which contains about 6% carbon.

PROCESS DESCRIPTION:


The iron oxide feed to the iron carbide process is in the form of iron ore fines in the range of 1mm to 0.1 mm. Iron ore fines are preheated in a series of cyclones and then pressurized to reactor pressure in lockhoppers, and fed to the reactor by a screw feeder.


The fluidized bed reactors have the upward moving stream of 730C gas composed of CO, CO2, H2, CH4 and H2O. The hydrogen reacts with the iron ore, combing with its oxygen to form water (the only process by-product). Carbon from the carbonaceous gases combines with the elemental iron to form iron carbide. The methane provides the gas system equilibrium. After the reactions in the fluid bed reactors, the off gases are condensed to get rid of water vapor, reconstituted with H2 and carbonaceous gases, raised to reactor working pressure to 1.8 atm, heated to 730C, and reintroduced in the windbox of the reactor.

An indication of the inherent thermal efficiency of the process is gained from the fact that the temperature of formation of iron carbide in the fluid bed reactor is only 730C as against around 1000C for reduction of iron in DRI processes and 1500C to produce hot metal in the blast furnace.

PROCESS ADVANTAGES

Lower operating temperature Lower production costs No storage costs as the product does not oxidize Steelmaking cheaper with Fe3C

Iron Carbide Process --- MetSim Model --- Description

The MetSim model for this process is largely based upon a basic flowsheet developed for Qualitech Steel Corporation by Iron Carbide Holdings Ltd, USA.

Flowsheet Description

Stream 1 representing the fine ore slurry is first thickened, filtered, dried to get rid of excess water, heated and pressurized. Unit operations starting from Slurry Thickener to Lock Hopper are used to carry out these functions. Then in the Reactor #1, the ore feed (Stream 14) is further heated and partially reduced to FeO by the reducing gases (Stream 17) consisting mainly Hydrogen. The gases from the Reactor #1 are then cleaned off the dust (Recycled back to the Reactor #1 as Stream 20) in a Reactor Cyclone #1. The cleaned reduced gases are used for preheating incoming reducing gases (Stream 26) in a Process Gas Interchanger #1. The water from these gases is scrubbed off in a scrubber and part of these gases are bled off to maintain N2 content of the reducing gases and are used as fuel elsewhere. Then the gases (Stream 24) are mixed with fresh Reformed gas (Stream 33) and Natural gas (Stream 34). This mixed gas (Stream 26) is preheated and then further heated to 730C in a Process Gas Heater #1 and injected in Reactor #1 as Stream 17.

The partially reduced ore (Stream 18) is carburized as Fe3C in the Reactor #2 by the help of CH4 – rich reducing gas (Stream 36). Again as for the Reactor #1, the top gases are passed through a Reactor Cyclone #2, then used for preheating incoming reducing gases in Process Gas Interchanger #2, scrubbed off excess water, mixed with make-up CH4 and heated further in Process Gas Heater #2 to get ready for carburization in the Reactor #2.

Model Assumptions:

Reactor #1: Partial reduction of iron ore to FeO takes place in this reactor. 5% carry-over of solid particles in the Top gas is assumed.

Reactor #2: Carburization of FeO to Fe3C takes place in this reactor. 5% carryover of solid particles in the Top gas is assumed.

Reactor Cyclones: 100% Efficiency.

Process Gas Interchangers: 100% Efficiency.

Stream Splitter: 5% gases are bled off.

Process Gas Heaters: 100% Efficiency.

Results

With the limited information available about the two-reactor system, several estimates have been made in the model. A more complete analysis can be carried out on receiving more information about the process flows and conditions.

Stream Number	1	2	3	4	5	6	7	8	9	
Description	Iron Ore Stur	Thickener Un	Thickener Ov	Slurry to Filte	Filtered Solid	Filterate	Dried Solids	Fines to Cycl	Dust Cyclone	
MT/HR SOLIDS	1000	999.9	0.10004	9,99,9	997.9	1.9998	979.63	18.27	17.357	
MT/HR AQUEOUS	1500	999.9	500.1	999.9	136.08	863,82	19.371	0,9943	0.9943	
MT/HR GASEOUS	0	0	O	0	0	Ö	0	115.71	0	
MT/HR TOTAL	2500	1999.8	500.2	1999.8	1134	865.82	999	134.98	18.351	
Percent Solids	40	50	0.02	50	88	0.23097	98.061	13.536	94.582	
Sp.Gr.SOLIDS	4.9467	4.9467	4.9467	4.9467	4.9467	4.9467	4.9704	3.9409	3.9409	
Sp.Gr.AQUEOUS	0.99826	0.99826	0.99826	0.99826	0.99826	0,99826	0,31545	0.31545	0.31545	
Sp.Gr.GASEOUS	0	0	0	0	0	0	0	0.00025289	0	
Sp.Gr.TOTAL	1.4665	1.6613	0.99842	1.6613	3.3545	1.0001	3.8646	0.00029499	2.4286	
Temperature C	20	20	20	20	20	20	595	595	595	
Gas nm3/hr	0	0	0	0	0	0	0	1.44E+05	0	
Sol/Liq m3/hr	1704.8	1203.8	500.99	1203.8	338.05	865.73	258.5	7.7881	7.5563	
Component Mass Flo	w Rates				·	·	·	·	·	
1 Fe3O4 MT/HR	900	899,91	0,090036	899.91	898.11	1.7998	892.02	6.0901	5.7856	
2 Fe2O3 MT/HR	50	49.995	0.005002	49.995	49.895	0.09999	43.805	6.0901	5.7856	
3 Fe3C1 MT/HR	0	0	٥	0	0	0	0	0	o	
7 Si1O2 MT/HR	50	49.995	0.005002	49,995	49.895	0.09999	43.805	6.0901	5.7856	
8 H2O MT/HR	1500	999.9	500.1	999.9	136.08	863,82	19.371	0,9943	0.9943	
9 N2 MT/HR	0	0	0	0	0	0	0	. 0	0	
10 O2 MT/HR	0	0	0	0	0	0	0	0	0	
11 H2O MT/HR	0	0	0	0	0	0	. 0	115,71	0	
12 CH4 MT/HR	0	0	0	0	0	0	0	0	0	
14 H2 MT/HR	0	0	0	0	0	0	0	0	0	
15 CO2 MT/HR	0	0	0	0	0	0	0	0	0	
16 CO MT/HR	0	0	0	0	0	0	0	0	0	
17 FeO MT/HR	0	0	0	0	0	0	0	0	0	
Element Mass Flow F	Element Mass Flow Rates									
1 H 1	167.85	111.89	55.962	111.89	15.227	96.663	2.1676	13,06	0.11126	
2 C 6	0	0	0	0	0	0	0	0	0	
3 N 7	0	0	0	0	0	0	0	0	0	
40 8	1622.6	1178.4	444.17	1178.4	410,66	767.74	300.25	110.4	7.3023	
5 Si 14	23.372	23.37	0,0023381	23.37	23.323	0.046739	20.476	2.8468	2.7044	
6 Fe 26	686.21	686.14	0.068648	686.14	684.77	1.3723	676.1	8,6664	8.2331	

Stream Number	10	11	12	13	14	15	17	18	19	
Description	Dust Cyclone	Baghouse Di	Bag Filter Ex	CO2	Lock Hopper	Lock Hopper	H2-rich Redu	Partially Red	Top gas with	
MT/HR SOLIDS	0.91352	0.8788	0.034717	0	997.87	0	0	930.81	48.99	
MT/HR AQUEOUS	0	0	0	0	20.365	0	0	0	0	
MT/HR GASEOUS	115.71	0	115.71	10	0	10	898.29	0	985,69	
MT/HR TOTAL	116.63	0.8788	115.75	10	1018.2	10	898,29	930.81	1034.7	
Percent Solids	0.78329	100	0.029994	0	98	0	0	100	4.7348	
Sp.Gr.SOLIDS	3.9409	3.9409	3.9409	0	4.9467	0	0	5.3688	5.3688	
Sp.Gr.AQUEOUS	٥	0	0	0	0.31545	. 0	0	0	0	
Sp.Gr.GASEOUS	0.00025289	0	0.00025289	0.0018064	0	0.00062225	2.9184E-05	0	3.2846E-05	
Sp.Gr.TOTAL	0.00025489	3.9409	0.00025296	0.0018064	3.8239	0.00062225	2.9184E-05	5.3688	3.4478E-05	
Temperature C	595	595	595	25	588.88	588.88	730	701.98	701.98	
Gas nm3/hr	1.44E+05	0	1.44E+05	5092.9	0	5092.9	8.38E+06	0	8.41E+06	
Sol/Liq m3/hr	0.2318	0.22299	0.0088094	0	266.28	0	0	173.37	9,1249	
Component Mass Flo	w Rates						*			
1 Fe3O4 MT/HR	0.30451	0.29293	0.011572	0	898.1	0	0	0	0	
2 Fe2O3 MT/HR	0.30451	0.29293	0.011572	. 0	49.883	0	0	0	0	
3 Fe3C1 MT/HR	0	0	0	0	0	0	0	0	0	
7 Si1O2 MT/HR	0.30451	0.29293	0.011572	0	49.883	0	0	49.883	2.6254	
8 H2O MT/HR	0	0	0	0	20.365	0	0	0	0	
9 N2 MT/HR	0	0	0	0	0	0	0	0	0	
10 O2 MT/HR	0	0	0	0	0	0	0	0	0	
11 H2O MT/HR	115.71	C	115.71	Ö	0	0	1.8568	0	97.728	
12 CH4 MT/HR	0	0	0	0	0	0	57.261	0	57.261	
14 H2 MT/HR	0	0	0	0	0	0	739.2	0	730.74	
15 CO2 MT/HR	0	0	0	10	0	10	0	0	0	
16 CO MT/HR	0	0	0	0	0	0	99.968	0	99,966	
17 FeO MT/HR	0	0	0	0	0	0	0	880.93	46,364	
Element Mass Flow F	Element Mass Flow Rates									
1H 1	12.948	0	12.948	0	2.2789	0	753.8	0	756.07	
2 C 6	0	0	0	2.7292	0	2.7292	85.737	0	85.736	
3 N 7	0	0	0	0	0	0	0	0	0	
40 8	103.1	0.32502	102.78	7.2708	307.88	7.2708	58.75	222.74	155.61	
5 Si 14	0.14234	0.13693	0.0054094	. 0	23.317	0	0	23.317	1.2272	
6 Fe 26	0.43332	0.41685	0.016468	0	684.75	0	0	684.75	36.04	

Stream Number	20	21	22	23	24	25	26	27	29	
Description	Recycled Soli	Top gas from	Cooled Top g	Dry Top gas	Recycle gase	Make-up gas	Cold Reducin	Preheated R	Bleed	
MT/HR SOLIDS	48.99	0	0	0	0	0	0	0	0	
MT/HR AQUEOUS	0	0	0	0	0	0	0	0	0	
MT/HR GASEOUS	0	985,69	985.69	889.92	845.42	52,863	898.29	898.29	44,496	
MT/HR TOTAL	48.99	985.69	985.69	889,92	845.42	52.863	898.29	898.29	44.496	
Percent Solids	100	0	0	0	0	0	0	0	. 0	
Sp.Gr.SOLIDS	5.3688	0	0	0	0	0	0	0	0	
Sp.Gr.AQUEOUS	0	0	0	0	0	0	0	0	0	
Sp.Gr.GASEOUS	0	3.2846E-05	4.7235E-05	7.8609E-05	7.8609E-05	9.5352E-05	7.9431E-05	4.3176E-05	7.8609E-05	
Sp.Gr.TOTAL	5.3688	3.2846E-05	4.7235E-05	7.8609E-05	7.8609E-05	9.5352E-05	7.9431E-05	4.3176E-05	7.8609E-05	
Temperature C	701.98	701.98	404.93	100	100	24.763	95.431	404.93	100	
Gas nm3/hr	0	8.41E+06	8,41E+06	8.29E+06	7.87E+06	5.08E+05	8.38E+06	8.38E+06	4.14E+05	
Sol/Liq m3/hr	9.1249	0		0	0	0	0	. 0	0	
Component Mass Flo	w Rates							•		
1 Fe3O4 MT/HR	0	0	0	0	0	0	0	0	0	
2 Fe2O3 MT/HR	0	0	. 0	0	0	0	0	0	0	
3 Fe3C1 MT/HR	0	0	0	0	0	0	0	0	0	
7 Si102 MT/HR	2.6254	0	0	0	0	0	0	0	0	
8 H2O MT/HR	0	0	0	0	0	0	0	0	0	
9 N2 MT/HR	0	٥	0	0	. 0	0	0	0	. 0	
10 O2 MT/HR	0	0	0	0	0	0	0	0	0	
11 H2O MT/HR	0	97.728	97.728	1.9546	1.8568	0	1.8568	1.8568	0.097728	
12 CH4 MT/HR	0	57.261	57.261	57.261	54.398	2.863	57.261	57.261	2.863	
14 H2 MT/HR	0	730,74	730.74	730.74	694.2	45	739.2	739.2	36.537	
15 CO2 MT/HR	0	0	0	0	0	0	0	0	0	
16 CO MT/HR	0	99.966	99.966	99.966	94.968	5	99,968	99,968	4.9983	
17 FeO MT/HR	46.364	0	0	0	0	0	0	0	0	
Element Mass Flow F	Element Mass Flow Rates									
1H 1	0	756.07	756.07	745.35	708.08	45.72	753,8	753.8	37.267	
2 C 6	0	85.736	85.736	85.736	81.45	4.2875	85.737	85.737	4.2868	
3 N 7	0	0	0	0	0	0	0	0	0	
40 8	11.723	143.89	143.89	58.836	55.894	2.856	58.75	58.75	2.9418	
5 Si 14	1.2272	0	0	0	0	0	0	0	0	
6 Fe 26	36.04	0	0	0	0	0	0	0	0	

Stream Number	33	34	35	36	37	38	39	40	- 41	
Description	SYN GAS	METHANE	Excess Wate	Hot Reducing	Final Product	Top gas with	Recycle Solid	Top gas from	Cooled Top g	
MT/HR SOLIDS	0	0	0	0	787.93	41.47	41.47	0	0	
MT/HR AQUEOUS	0	a	95.773	0	0	0	٥	0	0	
MT/HR GASEOUS	50	2.863	0	1663.8	0	1806.9	0	1806.9	1806.9	
MT/HR TOTAL	50	2.863	95.773	1663.8	787.93	1848.4	41.47	1806.9	1806.9	
Percent Solids	0	0	0	0	100	2.2436	100	0	0	
Sp.Gr.SOLIDS	0	0	. 0	0	6.7988	6.7988	6.7988	0	0	
Sp.Gr.AQUEOUS	0	0	0.9581	0	0	0	0	0	0	
Sp.Gr.GASEOUS	9.0829E-05	0.00071758	0	0.00012038	0	0.00013731	0	0.00013731	0.0001882	
Sp.Gr.TOTAL	9.0829E-05	0.00071758	0.9581	0.00012038	6.7988	0.00014047	6,7988	0.00013731	0.0001882	
Temperature C	25	0	100	730	659.76	659.76	659.76	659.76	407.56	
Gas nm3/hr	5.04E+05	4000	0:	3.76E+06	0	3.85E+06	0	3.85E+06	3.85E+06	
Sol/Liq m3/hr	. 0	0	99.962	0	115.89	6.0996	6.0996	. 0	0	
Component Mass Flo	w Rates									
1 Fe3O4 MT/HR	0	0	0	0	0	0	0	0	0	
2 Fe2O3 MT/HR	0	0	0	0	0	0	0	0	0	
3 Fe3C1 MT/HR	0	0	0	0	712.9	37.521	37.521	. 0	0	
7 Si1O2 MT/HR	0	0	0	0	49.883	2,6254	2.6254	0	0	
8 H2O MT/HR	0	0	95.773	0	0	0	. 0	0	0	
9 N2 MT/HR	0	0	0	0	0	0	0	0	0	
10 O2 MT/HR	0	0	0	0	0	0	0	0	0	
11 H2O MT/HR	0	0	0	22.526	0	237.11	0	237.11	237.11	
12 CH4 MT/HR	0	2.863	o	1493	0	1429.4	0	1429.4	1429.4	
14 H2 MT/HR	45	0	0	148.33	0	140.34	0	140.34	140.34	
15 CO2 MT/HR	0	0	0		0	0	0	0	0	
16 CO MT/HR	5	0	0	0	0	0	0	0	0	
17 FeO MT/HR	0	0	0	0	25.144	1.3234	1.3234	0	0	
Element Mass Flow F	Element Mass Flow Rates									
1 H _ 1	45	0,71953	10.717	526.06	0	526.12	0	526.12	526.12	
2 C 6	2.144	2.1435	0	1117.8	47.689	1072.7	2.51	1070.2	1070.2	
3 N 7	0	0	0	0	0	0	0	0	0	
40 8	2.856	-0	85,056	20.005	32.165	212.27	1.6929	210.58	210.58	
5 Si 14	0	0	0	0	23.317	1.2272	1.2272	0	0	
6 Fe 26	0	0	0	0	684.75	36.04	36.04	0	0	

Stream Number	42	43	4.4	4-					
_			44	45	46	47	51		
Description	Dry Top Gas		Bleed	Methane	Cold Reducin		Excess Water		
MT/HR SOLIDS	0	0	0	. 0	0	0	0		
MT/HR AQUEOUS	0	0	0	0		0	213.4		
MT/HR GASEOUS	1593.5	1513.8	79.675	150	1663.8	1663.8	0		
MT/HR TOTAL	1593.5	1513.8	79.675	150	1663.8	1663,8	213.4		
Percent Solids	0	0	0	0	0	0	0		
Sp.Gr.SOLIDS	0	0	0		0	0	0		
Sp.Gr.AQUEOUS	. 0	0	0	0	0	0	0.9581		
Sp.Gr.GASEOUS	0.00032537	0.00032537	0.00032537	0.00042264	0.0003319	0.00017742	0		
Sp.Gr.TOTAL	0.00032537	0.00032537	0.00032537	0.00042264	0.0003319	0.00017742	0.9581		
Temperature C	100	100	100	0	90.952	407.56	100		
Gas nm3/hr	3.59E+06	3.41E+06	1.79E+05	3.55E+05	3.76E+06	3.76E+06	0		
Sol/Liq m3/hr	0	0	0	0	0	0	222.73		
Component Mass Flo	w Rates								
1 Fe3O4 MT/HR	0	0	0	0	0	0	0		
2 Fe2O3 MT/HR	0	0	0	0	0	0	0		
3 Fe3C1 MT/HR	0	0	0	0	0	0	0		
7 Si1O2 MT/HR	0	0	0	0	0	0	0		
8 H2O MT/HR	0	0	0	0	0	0	213.4		
9 N2 MT/HR	0	0	0	0	0	0	0		
10 O2 MT/HR	0	0	0	0	0	0	0		
11 H2O MT/HR	23.711	22.526	1.1856	0	22,526	22.526	0		
12 CH4 MT/HR	1429.4	1358	71.472	135	1493	1493	0		
14 H2 MT/HR	140.34	133.33	7.0172	15	148.33	148.33	0		
15 CO2 MT/HR	0	0	0	0	0	0	0		
16 CO MT/HR	0	0	0	0	0	0	0		
17 FeO MT/HR	0	0	0	0	0	0	0		
Element Mass Flow Rates									
1 H 1	502.24	477.13	25.112	48.928	526.06	526.06	23.88		
2C 6	1070.2	1016.7	53.51	101.07	1117.8	1117,8	0		
3 N 7	0	0	0	0	0	0	0		
40 8	21.058	20.005	1.0529	0	20.005	20.005	189.52		
5 Si 14	0	0	0	0	0	0	0		
6 Fe 26	0	0	0	0	0	0	0		

CASE DEFINITION

Title : IRON CARBIDE PROCESS

Case :

Data Storage File Name : ironcarb3.sfw

: ON Mass Balance Option Heat Balance Option : ON

Units of Mass Units of Time : metric tonne

: hour

Ambient Air Pressure : 101.325 kPa Standard Pressure : 101.325 kPa

Ambient Air Temperature : Standard Temperature : 20.00 C 0.00 C :

Plant Site Latitude : Plant Site Elevation : 0.00 Degrees 0.00 Meters

COMPONENT DATA

```
ROW CNM CHF
                                 PHC CMW
                                                 SGF
 1 Fe3O4Fe3O4SI1 231.5386 5.1800 0.0000
                                              0.0000
  2 Fe2O3Fe2O3SI1 159.6922 5.2400
                                    0.0000
                                              0.0000
                           7.6940
2.2500
7.8600
                 179.5521
                                    0.0000
  3 Fe3C1Fe3C1SI1
                                              0.0000
                                    0.0000
                 12.0112
55.8470
28.0860
  4 C1 C1 SI1
                                              0.0000
 5 Fe1 Fe1
            SI1
                                     0.0000
                                              0.0000
  6 Sil Sil SIl
                           2.3300 0.0000
                                              0.0000
  7 Si102Si102SI1
                  60.0848
                           2.6500 0.0000
                                              0.0000
  8 H2O H2O LI3
                 18.0153
                            1.0000 0.0000
                                              0.0000
 9 N2
        N2 GC8
                 28.0134
                           0.0012 0.0000
                                             0.0000
 10 02
        O2 GC8
                 31.9988 0.0014 0.0000
                                              0.0000
 10 02 02 GC8
11 H2O H2O GC8
12 CH4 CH4 GC8
                 18.0153
                           0.0008 0.0000
                                              0.0000
                           0.0007 0.0000
0.0013 0.0000
0.0001 0.0000
                   16.0430
                 16.0430
30.0701
2.0159
                                              0.0000
 13 C2H6 C2H6 GC8
                                              0.0000
 14 H2 H2 GC8
                   2.0159
                                              0.0000
                 44.0100
                            0.0020 0.0000
 15 CO2 CO2 GC8
                                              0.0000
 16 CO
       CO GC8
                 28.0106
                           0.0012 0.0000
                                              0.0000
 17 FeO FeO SI1
                   71.8464
                           5.7000
                                    0.0000
                                              0.0000
                            . с
ROW CNM
            SOL A
                    В
                                     pH Wi COVABC
         0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
  1 Fe304
  2 Fe2O3
  3 Fe3C1
           0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
  4 C1
 10 02
 11 H2O
 12 CH4
         24.40 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 13 C2H6
         0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 14 H2
           0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 15 CO2
         1950.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
        23.77 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 16 CO
 17 FeO
          0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ROW CNM
           CRIT T CRIT P CRIT V ANTOINE VAPOR PRES A B C HENRY
  1 Fe3O4 0.000 0.0000 0.0000 0.0000 0.00
                                                          0.0
  2 Fe2O3 0.000 0.0000 0.0000 0.0000 0.00 0.000
                                                          0.0
 0.0
                                                         0.0
                                                          0.0
                                                          0.0
                                                          0.0
                                                          0.0
 9 N2
          0.000 0.0000 0.0000 0.0000 0.00 0.000
                                                          0.0
          0.000 0.0000 0.0000 0.000 0.00 0.000
0.000 0.0000 0.0000 0.00 0.000
 10 02
                                                         0.0
 11 H2O
                                                        0.0
         190.700 46.9135 98.9000 6.69561 405.42 267.777 35389.5
 12 CH4
         0.000 0.0000 0.0000 0.00000 0.00 0.000 0.0
0.000 0.0000 0.0000 0.00 0.000 0.0
 13 C2H6
 14 H2
         304.200 74.8792 94.8000 9.81060 1347.79 273.000 1215.7
 15 CO2
16 CO
         133.400 35.4638 93.1000 6.24020 230.27 260.010 63426.0
         0.000 0.0000 0.0000 0.00000 0.00 0.000 0.00
 17 FeO
```

COMPONENT DATA

ROW	CNM	REFERENCE	H2:	5 HTE-A	HTE-B	HTE-	C HTE-D
1	Fe304	B672160	-267300	-31312	71.0525	-7.8736	32.0732
2	Fe203	B672158	-197000	-20749	46.1517	-3.8751	21.9462
3	Fe3C1	B6771332	5985	-5013	21.1456	4.1225	-5.0322
4	C1	B672086	0	-2999	5.1802	0.2246	4.3597
5	Fe1	B672151	0	-7903	14.0914	-1.3293	11.6233
6	Si1	B672382	0	-2201	5.8656	0.2868	1.2792
7	Si102	B672387	-217720	-8654	19.1651	-0.5456	8.8977
8	H2O	B672180	-68315	-5071	16.1848	2.7637	0.0000
9	N2	B672244	0	-2846	7.5728	0.2525	1.7794
10	02	B672277	0	-2979	7.9696	0.2720	1.7697
11	H2O	B672182	-57795	-2403	7.2906	1.3003	0.3596
12	CH4	YAWS	-17890	-1649	3.8363	7.1302	-0.3830
13	C2H6	B6772223	-20240	-5819	11.3274	9.4527	4.7951
14	H2	B672174	. 0	-1837	6.3659	0.4428	-0.2847
15	CO2	YAWS	-94050	-3105	8.4720	2.5871	1.0415
16	CO	YAWS	-26420	-1787	6.0661	0.9368	-0.3112
17	FeO	BAK2248	-62382	8754	-8.5950	9.1416	-21.4692
				•			
	CNM		4P RANGE of				
1	Fe304	298.2	1800.0	-243067	-58.6967	-18.9430	-46.8195
1 2	Fe304 Fe203	298.2 298.2	1800.0 1800.0	-243067 -182323	-58.6967 -34.6418	-18.9430 -13.7715	-46.8195 -28.2755
1 2 3	Fe3O4 Fe2O3 Fe3C1	298.2 298.2 298.2	1800.0 1800.0 1400.0	-243067 -182323 15085	-58.6967 -34.6418 -32.7885	-18.9430 -13.7715 -13.6625	-46.8195
1 2 3 4	Fe3O4 Fe2O3 Fe3C1 C1	298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0	-243067 -182323 15085 2405	-58.6967 -34.6418 -32.7885 -3.3866	-18.9430 -13.7715 -13.6625 -1.5836	-46.8195 -28.2755 -16.6593 -5.1587
1 2 3 4 5	Fe3O4 Fe2O3 Fe3C1 C1 Fe1	298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0	-243067 -182323 15085 2405 2679	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957
1 2 3 4 5 6	Fe304 Fe203 Fe3C1 C1 Fe1 Si1	298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0	-243067 -182323 15085 2405 2679 2177	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096
1 2 3 4 5 6 7	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102	298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0	-243067 -182323 15085 2405 2679 2177 -210342	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464
1 2 3 4 5 6 7 8	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2	-243067 -182323 15085 2405 2679 2177 -210342 -70630	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000
1 2 3 4 5 6 7 8 9	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000 -9.9139
1 2 3 4 5 6 7 8 9	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2 O2	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0 3000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078 5395	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044 -54.8302	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358 -2.3535	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000
1 2 3 4 5 6 7 8 9 10	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2 O2 H20	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0 3000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078 5395 -54212	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044 -54.8302 -48.4557	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358 -2.3535 -3.8711	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000 -9.9139
1 2 3 4 5 6 7 8 9 10 11	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2 O2 H20 CH4	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0 3000.0 2000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078 5395 -54212 -17759	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044 -54.8302 -48.4557 -40.3353	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358 -2.3535 -3.8711 -9.8039	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000 -9.9139 -10.5960 -6.7579 -1.5255
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2 O2 H20 CH4 C2H6	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0 3000.0 2000.0 700.0 1000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078 5395 -54212 -17759 -19821	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044 -54.8302 -48.4557 -40.3353 -48.2326	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358 -2.3535 -3.8711 -9.8039 -15.8609	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000 -9.9139 -10.5960 -6.7579 -1.5255 -2.9266
1 2 3 4 5 6 7 8 9 10 11 12 13	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2 O2 H20 CH4 C2H6 H2	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0 3000.0 700.0 1000.0 3000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078 5395 -54212 -17759 -19821 4863	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044 -54.8302 -48.4557 -40.3353 -48.2326 -36.6465	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358 -2.3535 -3.8711 -9.8039 -15.8609 -2.1036	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000 -9.9139 -10.5960 -6.7579 -1.5255 -2.9266 -9.3536
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2 O2 H20 CH4 C2H6 H2 CO2	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.0 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0 2000.0 700.0 1000.0 3000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078 5395 -54212 -17759 -19821 4863 -93224	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044 -54.8302 -48.4557 -40.3353 -48.2326 -36.6465 -48.5944	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358 -2.3535 -3.8711 -9.8039 -15.8609 -2.1036 -8.4916	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000 -9.9139 -10.5960 -6.7579 -1.5255 -2.9266 -9.3536 -2.4252
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fe304 Fe203 Fe3C1 C1 Fe1 Si1 Si102 H20 N2 O2 H20 CH4 C2H6 H2	298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2 298.2	1800.0 1800.0 1400.0 3000.0 1811.0 1687.0 2000.0 373.2 3000.0 3000.0 700.0 1000.0 3000.0	-243067 -182323 15085 2405 2679 2177 -210342 -70630 5078 5395 -54212 -17759 -19821 4863 -93224	-58.6967 -34.6418 -32.7885 -3.3866 -8.2139 -6.4390 -16.8483 -1.0739 -51.3044 -54.8302 -48.4557 -40.3353 -48.2326 -36.6465	-18.9430 -13.7715 -13.6625 -1.5836 -4.0925 -2.6130 -6.1496 -26.4253 -2.2358 -2.3535 -3.8711 -9.8039 -15.8609 -2.1036	-46.8195 -28.2755 -16.6593 -5.1587 -5.4957 -4.1096 -14.5464 0.0000 -9.9139 -10.5960 -6.7579 -1.5255 -2.9266 -9.3536

FLOWSHEET DATA

NO	OPR	UNIT PROCESS	IS1	IS2	IS3	IS4	IS5	IS6	INV	OS1	OS2	053	OS4	OS5	OS6
1	SEC		0			0	0	0	0	0	0	0	0	0	0
2	THK	SLURRY THICKENER	1	0	0	0	0	0	0	3	2	0	0	0	0
3	TAK	STORAGE TANK	2	0	0	0	0	0	0	4	0	0	0	0	0
4	FIL	DRUM FILTER	4	0	0	0	0	0	0	5	6	0	0	0	0
5	DRY	THERMAL DRYER	5	0	0	0	0	0	0	7	8	0	0	0	0
6			8	0	0	0	0	0	0	9	10	0	0	0	0
		WASTE GAS B.H.	10	0	0	0	0	0	0	11	12	0	0	0	0
8	SPP	LOCK HOPPER	11	9	7	13	0	0	0	14	15	0	0	0	0
		REACTOR #1	20	17	14	0	0	0	0	18	19	0	0	0	0
10	SPP	REACTOR CYCLONE #1	19	0	0	0	0	0	0	21	20	0	0	0	0
11	HTX	PROCESS GAS INTERCHANGER #1	21	0	0	26	0	0	0	22	27	0	0	0	0
12	SPP	SCRUBBER #1	22	0	0	0	0	0	0	23	35	0	0	0	0
13	SPS	STREAM SPLITTER	23	0	0	0	0	0	0	24	29	0	0	0	0
14	MIX	MIXER #1	25	24	0	0	0	0	0	26	0	0	0	0	0
15	HTX	PROCESS GAS HEATER #1	27	0	0	30	31	0	0	17	32	0	0	0	´ 0
16	MIX	MIXER	33	34	0	0	0	0	0	25	0	0	0	0	0
17	SPP	REACTOR #2	18	36	. 39	0	0	0	0	37	38	0	0	0	0
		REACTOR CYCLONE #2	38	0	0	0	0	0	0	40	39	0	0	0	0
19	XTH	PROCESS GAS INTERCHANGER #2	40	0	0	46	0	0	0	41	47	0	0	0	0
		SCRUBBER #2	41	0	0	0	0	0	0	42	0	0	51	0	0
		STREAM SPLITTER #2	42	0	0	0	0	0	0	43	44	0	0	0	0
		MIXER #2	45	43	0	0	0	0	0	46	0	0	0	0	0
23	HTX	PROCESS GAS HEATER #2	47	0	0	48	49	0	0	36	50	0	0	0	0

		INPUT	HEAT BA		SUMMARY ENERGY	- 10000 HEAT	00 KCAI	L/HOUR OUTPUT	
OP	PROCESS STEP	STREAM				LOSS		STREAM	TOTAL
1	IRON CARBIDE PRO	0	0	0	0	0		0	0
2	SLURRY THICKENER	-8	0	0	0	0	0	8	0
3	STORAGE TANK	-6	0	0	0	0	0	6	0
4	DRUM FILTER	-6	0	0	0	0	0	· 6	0
5	THERMAL DRYER	-2	-68	0	0	0	233	-164	0
6	DUST CYCLONE	35	0	0	0	0	0	-35	0
7	WASTE GAS B.H.	32	0	0	0	0	0	-32	0
8	LOCK HOPPER	132	0	0	0	0	0	-132	0
9	REACTOR #1	2009	-103	0	0	0	0	-1906	0
10	REACTOR CYCLONE	1813	0	0	0	0	0	-1813	. 0
11	PROCESS GAS INTE	1992	0	0	0	0	0	-1992	0
12	SCRUBBER #1	999	56	0	0	0	-854	-201	0
13	STREAM SPLITTER	194	0	0	0	0	0	-194	0
14	MIXER #1	184	0	0	0	0	0	-184	0
15	PROCESS GAS HEAT	993	12	0	0	0	873	-1878	. 0
16	MIXER	0	0	0	0	0	0	0	0
17	REACTOR #2	1339	-149	0	0	0	0	-1190	0
18	REACTOR CYCLONE	1109	0	0	0	0	0	-1109	0
19	PROCESS GAS INTE	1194	0	0	0	0	. 0	-1194	0
20	SCRUBBER #2	603	125	0	0	0	-614	-113	0
21	STREAM SPLITTER	97	0	0	0	0	0	-97	0
22	MIXER #2	8 9	0	0	. 0	. 0	0	-89	0
23	PROCESS GAS HEAT	591	0	0	0	. 0	n	-591	n

STREAM TEMPERATURES AND ENTHALPIES

NO.	STREAM	TEMP-C	TEMP-F	KCAL/HR	BTU/HR	KJ/H
1	Iron Ore Slurry Thickener Underflow Thickener Overflow Slurry to Filter Filtered Solids Filterate Dried Solids Fines to Cyclone Dust Cyclone Unders Dust Cyclone Overs Baghouse Discharge Bag Filter Exhaust CO2 Lock Hopper Discharge	20.000	68-00	-8399856.0	-33333324 0	-35145000
2	Thickener Underflow	20.000	68.00	-5902967.0	-23424865.0	-24698013.
3	Thickener Overflow	20.000	68.00	-2496890.0	-9908459.0	-10446986.
4	Slurry to Filter	20.000	68.00	-5902967.0	-23424865.0	-24698013.
5	Filtered Solids	20.000	68.00	-1588426.0	-5303382.0	-6645973.
6	Filterate	20.000	68.00	-4314541.0	-17121483.0	-18052040.
7	Dried Solids	595.000	1103.00	129106767.0	512337056.0	540182714.
8	Fines to Cyclone	595.000	1103.00	34590193.0	137264979.0	144725368.
9	Dust Cyclone Unders	595.000	1103.00	2692071.0	10683002.0	11263626.
10	Dust Cyclone Overs	595.000	1103.00	31898122.0	126581977.0	133461742.
11	Baghouse Discharge	595.000	1103.00	112224.0	445340.0	469544.
12	Bag Filter Exhaust	595.000	1103.00	31785898.0	126136637.0	132992197.
. 13	CO2	25.000	77.00	0.0	0.0	0.
14	Lock Hopper Discharge	588.879	1091.98	130492942.0	517837843.0	545982469
15	Lock Hopper Flare	588 879	1091.98	1418120 0	5627556.0	5933415
16	CAKE TO DRYER	20.000	68.00	-1588426.0	-6303382.0	-6645973
17	Lock Hopper Discharge Lock Hopper Flare CAKE TO DRYER H2-rich Reducing gas Partially Reduced Ore Top gas with Fines Recycled Solids from Reactor #1	730.000	1346.00	1873432343.0	7434380347.0	7838440924
18	Partially Reduced Ore	701.984	1295.57	92812189.0	368308532.0	388326200
19	Top gas with Fines	701.984	1295.57	1812833656.0	7193905321.0	7584896015
20	Recycled Solids from Reactor #1	701.984	1295.57	4884852.0	19384660.0	20438221.
21	Top gas from Reactor #1	701.984	1295.57	1807948803.0	7174520661.0	7564457794
22	Cooled Top gas	404.927	760.87	999141467.0	3964913767.0	4180407899.
23	Dry Top gas	100.000	212.00	194075162.0	770152484.0	812010479
24	Recycle gases	100.000	212.00	184371404.0	731644860.0	771409955.
25	Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed	24.763	76.57	63735.0	252921.0	266667.
26	Cold Reducing gas	95.431	203.78	184435139.0	731897781.0	771676622
27	Preheated Reducing gas	404.927	760.87	993242475.0	3941504675.0	4155726517.
28	28	730.000	1346.00	712672346.0	2828112422.0	2981821095.
29	Bleed	100.000	212.00	9703758.0	38507624.0	40600524.
30	Natural Gas	25.000	77.00	0.0	0.0	0.
31	Air	25.000	77.00	0.0 19525.0 4343561.0 101123.0	77483.0	81694.
32	32	730.000	1346.00	4343561.0	17236642.0	18173458.
33	SYN GAS	25.000	77.00	101123.0	401288.0	423098.
34	METHANE	0.000	32.00	-37388.0	-148368.0	-156431.
35	Excess Water	100.000	212.00	7189427.0	28529954.0	
36	METHANE Excess Water Hot Reducing gas Final Product	730.000		1242031439.0		
37	Final Product	659.762	1219.57	80817228.0		338139281.
38	Top gas with Fines	659.762		1109000676.0		
	Recycle Solids from Reactor #2	659.762	1219.57	4253538.0	16879404.0	
40	Top gas from Reactor #2			1104747137.0		
41	Cooled Top gas	407.557	765.60	602555707.0	2391134285.0	2521093078.
	Dry Top Gas	100.000	212.00	97148416.0	385516070.0	406468972.
43	Recycle gas	100.000	212.00	92290995.0	366240267.0	386145524.
	Bleed			4857421.0	19275804.0	20323449.
45	Methane	0 000	22 00	2025406 0	12000000 0	70050000
46	Cold Reducing Gas	90.952	195.71	89265509.0	354234169 0	373486891
47	Preheated Reducing Gas	407.557	765.60	591456940.0	2347090817.0	2474655836
50	50	0.000		-650574500.0		
51	Excess Water	100.000	212.00	16019284.0	63569657.0	67024685.

VOLUMETRIC FLOW RATE OF STREAMS WITH GASES

NO.	STREAM	TIME	ACFM	SCFM		
	Fines to Cyclone	100.0000			+ + 4 5 7569	
	Dust Cyclone Overs	100.0000	269310	84734	457561	143965
	Bag Filter Exhaust	100.0000	269310	84734	457561	143964
	CO2	100.0000	3258		5536	5093
	Lock Hopper Flare	100.0000	9459	2998	16071	5093
	H2-rich Reducing gas		18116257		30779716	8381045
	Top gas with Fines		17663233		30010023	8406237
	Top gas from Reactor #1		17663228		30010014	8406227
22	Cooled Top gas	100.0000	12282411	4947719	20867949	8406227
	Dry Top gas	100.0000	6663184	4877585	11320822	8287070
	Recycle gases	100.0000	6330025	4633706	10754781	7872716
	Make-up gases		326308		554400	508328
	Cold Reducing gas	100.0000	6656222	4932897	11308993	8381045
	Preheated Reducing gas	100.0000	12245617	4932897	20805435	8381045
	28	100.0000	6055222	1648741	10287888	2801228
	Bleed	100.0000	333159	243879	566041	414353
	Natural Gas	100.0000	896	822	1522	1397
	Air	100.0000	10277	9416	1522 17461	15997
	32	100.0000	37599	10238	63880	17394
	SYN GAS	100.0000				
	METHANE	100.0000	2348	2354	3990	4000
	Hot Reducing gas	100.0000	8134866	2214845	13821225	3763046
	Top gas with Fines	100.0000	7745051	2267508	13158925	3852520
	Top gas from Reactor #2	100.0000	7745047		13158919	3852514
	Cooled Top gas	100.0000		2267504	9600878	3852514
	Dry Top Gas		2882563		4897505	3587010
	Recycle gas	100.0000	2738435	2005673	4652630	3407659
	Bleed	100.0000		105562	244875	179350
	Methane	100.0000	208892	209173	354909	355387
	Cold Reducing Gas		2950567		5013045	3763046
47	Preheated Reducing Gas	100.0000	5519639	2214845	9377927	3763046

VOLUMETRIC FLOW RATE OF STREAMS WITH LIQUIDS AND SOLIDS ONLY

	STREAM	TIME			M3/HR	
	Iron Ore Slurry				1704.771	
	Thickener Underflow				1203.779	
	Thickener Overflow				500.992	
	Slurry to Filter				1203.779	
	Filtered Solids				338.045	
	Filterate	100.0000	3811.687	240.4815	865.733	20777.60
	Dried Solids	100.0000	1138.145	71.8062	258.502	6204.06
	Dust Cyclone Unders				7.556	
	Baghouse Discharge	100.0000	0.982	0.0619	0.223	5.35
	Lock Hopper Discharge		1172.396	73.9671	266.282	6390.76
			763.331		173.372	4160.93
	Recycled Solids from Reactor #1	100.0000	40.175	2.5347	9.125	219.00
	Excess Water	100.0000	440.117	27.7672	99.962	2399.09
	Final Product	100.0000				2781.40
	Recycle Solids from Reactor #2	100.0000	26.855	1.6943	6.100	146.39
51	Excess Water	100.0000	980.656	61.8701	222.732	5345.58

MASS FLOW RATES - MT/HR

	STREAM +	L	MT/HR-LI	4	
1	Iron Ore Slurry Thickener Underflow Thickener Overflow Slurry to Filter Filtered Solids Filterate Dried Solids	1000.000	1500.000	0.000	2500.000
2	Thickener Underflow	999.900	999.900	0.000	1999.800
3	Thickener Overflow	0.100	500.100	0.000	500.200
4	Slurry to Filter	999.900	999.900	0.000	1999.800
5	Filtered Solids	997.900	136.077	0.000	1133.977
6	Filterate	2.000	863.823	0.000	865.822
7	Dried Solids	979.630	19.371	0.000	999.001
8	Fines to Cyclone	18.270	19.371 0.994	115.712	134.977
9	Dust Cyclone Unders	17.357	0.994	0.000	18.351
10	Dust Cyclone Unders Dust Cyclone Overs Baghouse Discharge Bag Filter Exhaust CO2 Lock Hopper Discharge	0.914	0.000	115.712	116.626
11	Baghouse Discharge	0.879	0.000	0.000	0.879
12	Bag Filter Exhaust	0.035	0.000	115.712	115.747
	CO2	0.000	0.000	10.000	10.000
14	Lock Hopper Discharge	997.865	20.365	0.000	1018.231
15	Lock Hopper Flare	0.000	0.000	10.000	10.000
	H2-rich Reducing gas	0.000	0.000	898.288	898.288
18	Partially Reduced Ore	930.809	0.000	0.000	930.809
19	Top gas with Fines	48.990	0.000	985.694	
20	Recycled Solids from Reactor #1	48.990	0.000	0.000	48.990
21	Recycled Solids from Reactor #1 Top gas from Reactor #1	0.000	0.000	985.694	985.694
22	Cooled Top gas	0.000 0.000	0.000	985.694	985.694
23	Dry Top gas	0.000	0.000	889.921	
24	Recycle gases	0.000	0.000	845.425	845.425
25	Make-up gases Cold Reducing gas Preheated Reducing gas 28	0.000	0.000	52.863	
26	Cold Reducing gas	0.000 0.000	0.000	898.288	
27	Preheated Reducing gas	0.000	0.000	898.288	
		0.000	0.000	578.467	578.467
	Bleed	0.000	0.000	44.496	44.496
	Natural Gas	0.000	0.000	1.000	1.000
	Air	0.000	0.000 0.000 0.000 0.000 0.000	20.583	20.583
	32	0.000	0.000	21.583	21.583
33	SYN GAS	0.000	0.000	50.000	50.000
34	METHANE	0.000	0.000	2.863	2.863
35	Excess water	0.000	95.773	0.000	95.773
36	not Reducing gas	0.000	0.000	1663.827	1663.827
37	rinai product	787.925	0.000	0.000	787.925
30	nop gas with rines	41.470	0.000	1806.902	1848.372
33	Top man from Description #2	41.470	0.000	0.000	41.470
4.0	Cooled Ten and	0.000	0.000	1806.902	1806.902
4.7	Dry Ton Con	0.000	0.000	1806.902	1806.902
43	SYN GAS METHANE Excess Water Hot Reducing gas Final Product Top gas with Fines Recycle Solids from Reactor #2 Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane Cold Reducing Gas Preheated Reducing Gas Excess Water	0.000	0.000	1593.502	1593.502
4.4	Rland	0.000	0.000	1513.827	1513.827
45	Methano	0.000	0.000	79.675	7/9.6/5
4.5	Cold Reducing Gas	0.000	0.000	150.000	150.000
47	Preheated Reducing Cae	0.000	0.000	1003.827	1003.827
51	Excess Water	0.000	212 400	1003.827	T003.82/
31	DVOCDD NGCCI	0.000	213.400	0.000	213.400

SPECIFIC GRAVITIES

	STREAM	PCS				SG-TC
1	Iron Ore Slurry Thickener Underflow Thickener Overflow Slurry to Filter Filtered Solids Filterate Dried Solids Fines to Cyclone Dust Cyclone Unders Dust Cyclone Overs Baghouse Discharge Bag Filter Exhaust CO2	40.0000	4.9467	0.9983	0.0000	
2	Thickener Underflow	50.0000	4.9467	0.9983	0.0000	1.6613
3	Thickener Overflow	0.0200	4.9467	0.9983	0.0000	0.9984
4	Slurry to Filter	50.0000	4.9467	0.9983	0.0000	1.6613
5	Filtered Solids	88.0000	4.9467	0.9983	0.0000	3.3545
6	Filterate	0.2310	4.9467	0.9983	0.0000	1.0001
7	Dried Solids	98.0610	4.9704	0.3154	0.0000	3.8646
8	Fines to Cyclone	13.5359	3.9409	0.3154	0.0003	0.0003
9	Dust Cyclone Unders	94.5818	3.9409	0.3154	0.0000	2.4286
10	Dust Cyclone Overs	0.7833	3.9409	0.0000	0.0003	0.0003
11	Baghouse Discharge	100.0000	3.9409	0.0000	0.0000	3.9409
12	Bag Filter Exhaust	0.0300	3.9409	0.0000	0.0003	0.0003
13	CO2	0.0000	0.0000	0.0000	0.0018	0.0018
14	Lock Hopper Discharge Lock Hopper Flare	97.9999	4.9467	0.3154	0.0000	3.8239
15	Lock Hopper Discharge Lock Hopper Flare H2-rich Reducing gas Partially Reduced Ore Top gas with Fines	0.0000	0.0000		0.0006	0.0006
17	H2-rich Reducing gas	0.0000	0.0000	0.0000	0.0000	0.0000
18	Partially Reduced Ore	100.0000	5.3688	0.0000	0.0000	5.3688
19	Top gas with Fines	4.7348	5.3688		0.0000	0.0000
			5.3688	0.0000	0.0000	5.3688
21	Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28	0.0000	0.0000		0.0000	0.0000
22	Cooled Top gas	0.0000	0.0000		0.0000	0.0000
23	Dry Top das	0.0000	0.0000		0.0001	0.0001
24	Recycle dases	0.0000	0.0000		0.0001	0.0001
25	Make-up dases	0.0000	0.0000		0.0001	0.0001
26	Cold Reducing gas	0.0000	0.0000		0.0001	0.0001
27	Preheated Reducing gas	0.0000	0.0000		0.0000	0.0000
28	28	0.0000	0.0000		0.0001	0.0001
29	Bleed	0.0000	0.0000		0.0001	0.0001
	Natural Gas	0.0000	0.0000			0.0007
	Air	0.0000	0.0000		0.0012	0.0012
	32	0.0000	0.0000			0.0012
	SYN GAS					
		0.0000	0.0000		0.0001	0.0001
24	France Water	0.0000	0.0000			0.0007
33	METHANE Excess Water Hot Reducing gas Final Product Top gas with Fines	0.0000	0.0000		0.0000	0.9581
20	Final Droduct	0.0000	0.0000	0.0000	0.0001	0.0001
3/	Top goe with Fine	100.0000	6.7988	0.0000	0.0000	6.7988
		2.2436	6.7988	0.0000		0.0001
39	Recycle Solids from Reactor #2	100.0000				6.7988
40	Top gas from Reactor #2	0.0000	0.0000	0.0000	0.0001	0.0001
41	Cooled Top gas	0.0000	0.0000			0.0002
42	Dry Top Gas	0.0000	0.0000	0.0000		0.0003
43	Recycle gas	0.0000	0.0000	0.0000		0.0003
44	Breed	0.0000	0.0000	0.0000		0.0003
	38 13					
45	Methane	0.0000	0.0000			
45 46	Methane Cold Reducing Gas	0.0000	0.0000	0.0000	0.0003	0.0003
45 46 47	Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane Cold Reducing Gas Preheated Reducing Gas Excess Water	0.0000 0.0000 0.0000 0.0000		0.0000	0.0003	0.0004 0.0003 0.0002 0.9581

SOLIDS - MT/HR NO. STREAM	Fe304	Fe203	Fe3C1	C1	Fe1
	-	+	+	+	
1 Iron Ore Slurry 2 Thickener Underflow	899.910	49.9950	0.000	0.00000	0.00000
3 Thickener Overflow	0.090	0.0050	0.000	0.00000	0.00000
4 Slurry to Filter	899.910	49.9950	0.000	0.00000	0.00000
5 Filtered Solids	898.110	49.8950	0.000	0.00000	0.00000
6 Filterate	1.800	0.1000	0.000	0.00000	0.00000
/ Dried Solids	892.020 £ 000	43.8049	0.000	0.00000	0.00000
9 Dust Cyclone Unders	5.786	5.7856	0.000	0.00000	0.00000
10 Dust Cyclone Overs	0.305	0.3045	0.000	0.00000	0.00000
11 Baghouse Discharge	0.293	0.2929	0.000	0.00000	0.00000
12 Bag Filter Exhaust	0.012	0.0116	0.000	0.00000	0.00000
16 Cake to Dakes 17 Tock Hobber Discuside	898.099	49.8834	0.000	0.00000	0.00000
37 Final Product	0.000	0.0000	712.898	0.00000	0.00000
38 Top gas with Fines	0.000	0.0000	37.521	0.00000	0.00000
1 Iron Ore Slurry 2 Thickener Underflow 3 Thickener Overflow 4 Slurry to Filter 5 Filtered Solids 6 Filterate 7 Dried Solids 8 Fines to Cyclone 9 Dust Cyclone Unders 10 Dust Cyclone Overs 11 Baghouse Discharge 12 Bag Filter Exhaust 14 Lock Hopper Discharge 16 CAKE TO DRYER 37 Final Product 38 Top gas with Fines 39 Recycle Solids from Reactor #2	0.000	0.0000	37.521	0.00000	0.00000
SOLIDS - MT/HR					
NO. STREAM 1 Iron Ore Slurry 2 Thickener Underflow 3 Thickener Overflow 4 Slurry to Filter 5 Filtered Solids 6 Filterate 7 Dried Solids 8 Fines to Cyclone 9 Dust Cyclone Unders 10 Dust Cyclone Overs 11 Baghouse Discharge 12 Bag Filter Exhaust 14 Lock Hopper Discharge 16 CAKE TO DRYER 18 Partially Reduced Ore 19 Top gas with Fines 20 Recycled Solids from Reactor #1	\$11 +	\$1102 ++	FeO.		
1 Iron Ore Slurry	0.00000	50.0000	0.000		
2 Thickener Underflow	0.00000	49.9950	0.000		
4 Slurry to Filter	0.00000	49.9950	0.000		
5 Filtered Solids	0.00000	49.8950	0.000		
6 Filterate	0.00000	0.1000	0.000		
7 Dried Solids	0.00000	43.8049	0.000		
8 Fines to Cyclone 9 Dust Cyclone Unders	0.00000	5 7856	0.000		•
10 Dust Cyclone Overs	0.00000	0.3045	0.000		
11 Baghouse Discharge	0.00000	0.2929	0.000		
12 Bag Filter Exhaust	0.00000	0.0116	0.000		
14 Lock Hopper Discharge	0.00000	49.8834	0.000		
18 Partially Reduced Ore	0.00000	49.8950	880 925		
19 Top gas with Fines	0.00000	2.6254	46.364		
20 Recycled Solids from Reactor #1	0.00000	2.6254	46.364		
37 Final Product 38 Top gas with Fines	0.00000	49.8834	25.144		
38 Top gas with Fines 39 Recycle Solids from Reactor #2	0.00000	2.6254	1.323		
-	0.00000	2.0234	1.323		
SOLIDS - WEIGHT PERCENT NO. STREAM	Fe304	Fe203	Fe3C1	C1	Fe1
NO. SIREAM					
1 Iron Ore Slurry 2 Thickener Underflow	-90.0000	5.0000	0.0000	0.00000	0.00000
3 Thickener Overflow	90.0000	5.0000	0.0000	0.00000	0.00000
4 Slurry to Filter	90.0000	5.0000	0.0000	0.00000	
5 Filtered Solids	90.0000	5.0000	0.0000	0.00000	
6 Filterate		5.0000		0.00000	
7 Dried Solids 8 Fines to Cyclone		4.4716 33.3333		0.00000	0.00000
9 Dust Cyclone Unders	33,3333	33.3333	0.0000		0.00000
10 Dust Cyclone Overs	33.3333	33.3333	0.0000	0.00000	0.00000
ll Baghouse Discharge	33.3333	33.3333	0.0000		0.00000
12 Bag Filter Exhaust 14 Lock Hopper Discharge	33.3333	33.3333	0.0000		0.00000
16 CAKE TO DRYER	90.0000	5.0000	0.0000		
37 Final Product	0.0000	0.0000	90.4778	0.00000	0.00000
37 Final Product 38 Top gas with Fines	0.0000	0.0000	90.4778	0.00000	0.00000
39 Recycle Solids from Reactor #2	0.0000	0.0000	90.4778	0.00000	0.00000

	DS - WEIGHT PERCENT STREAM	Si1	Si102	FeO
2 3 4 5 6 7 8 9 10 11 12 14 16 18 19 20 37	Baghouse Discharge Bag Filter Exhaust Lock Hopper Discharge CAKE TO DRYER Partially Reduced Ore Top gas with Fines Recycled Solids from Reactor #1 Final Product	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	5.0000 5.0000 5.0000 5.0000 5.0000 4.4716 33.3333 33.3333 33.3333 33.3333 4.9990 5.0000 5.3591 5.3591 6.3310	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
39	Top gas with Fines Recycle Solids from Reactor #2 COUS - MT/HR			
	STREAM	H2O		
2 3 4 5 6 7 8 9 14 16 35	Iron Ore Slurry Thickener Underflow Thickener Overflow Slurry to Filter Filtered Solids Filterate Dried Solids Fines to Cyclone Dust Cyclone Unders Lock Hopper Discharge CAKE TO DRYER Excess Water Excess Water	1500.00 999.90 500.10 999.90 136.08 863.82 19.37 0.99 20.37 136.08 95.77 213.40		
	EOUS - WEIGHT PERCENT STREAM	H2O		
1 2 3 4 5 6 7 8 9 14 16 35	Iron Ore Slurry Thickener Underflow Thickener Overflow Slurry to Filter Filtered Solids Filterate Dried Solids Fines to Cyclone Dust Cyclone Unders Lock Hopper Discharge CAKE TO DRYER Excess Water Excess Water	100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000		

	COUS - GRAMS PER LITER STREAM	H2O				
2	Iron Ore Slurry Thickener Underflow Thickener Overflow Slurry to Filter Filtered Solids Filterate Dried Solids Fines to Cyclone Dust Cyclone Unders Lock Hopper Discharge CAKE TO DRYER Excess Water Excess Water	998.259				
3	Thickener Overflow	998.259				
4	Slurry to Filter	998.259				
5	Filtered Solids	998.259				
6	Filterate	998.259				
7	Dried Solids	315.448				
8	Fines to Cyclone	315.448				
9	Dust Cyclone Unders	315.448				
14	Lock Hopper Discharge	315.448				
16	CAKE TO DRYER	998.259				
35	Excess Water	958.099				
51	Excess Water	958.099				
GASE	EOUS - MT/HR					
NO.	STREAM +	N2	02	H2O	CH4	C2H6
8	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane Cold Reducing Gas	0.0000	0.00000	115.712	0.00	0.00000
10	Dust Cyclone Overs	0.0000	0.00000	115.712	0.00	0.00000
12	Bag Filter Exhaust	0.0000	0.00000	115.712	0.00	0.00000
17	H2-rich Reducing gas	0.0000	0.00000	1.857	57.26	0.00000
19	Top gas with Fines	0.0000	0.00000	97.728	57.26	0.00000
21	Top gas from Reactor #1	0.0000	0.00000	97.728	57.26	0.00000
22	Cooled Top gas	0.0000	0.00000	97.728	57.26	0.00000
23	Dry Top gas	0.0000	0.00000	1.955	57.26	0.00000
24	Recycle gases	0.0000	0.00000	1.857	54.40	0.00000
25	Make-up gases	0.0000	0.00000	0.000	2.86	0.00000
26	Cold Reducing gas	0.0000	0.00000	1.857	57.26	0.00000
27	Preheated Reducing gas	0.0000	0.00000	1.857	57.26	0.00000
28	28	6.5303	0.00000	5.762	332.39	0.00000
29	Bleed	0.0000	0.00000	0.098	2.86	0.00000
30	Natural Gas	0.0000	0.00000	0.000	1.00	0.00000
31	Air	15.8489	4.73409	0.000	0.00	0.00000
32	32	15.8489	0.74497	2.246	0.00	0.00000
34	METHANE	0.0000	0.00000	0.000	2.86	0.00000
36	Hot Reducing gas	0.0000	0.00000	22.526	1492.97	0.00000
38	Top gas with Fines	0.0000	0.00000	237.111	1429.45	0.00000
40	Top gas from Reactor #2	0.0000	0.00000	237.111	1429.45	0.00000
4 I	Cooled Top gas	0.0000	0.00000	237.111	1429.45	0.00000
42	Dry Top Gas	0.0000	0.00000	23.711	1429.45	0.00000
43	Recycle gas	0.0000	0.00000	22.526	1357.97	0.00000
44	Bleed	0.0000	0.00000	1.186	71.47	0.00000
45	Methane Cold Reducing Gas Preheated Reducing Gas	0.0000	0.00000	0.000	135.00	0.00000
4 C	Cold Reducing Gas	0.0000	0.00000	22.526	1492.97	0.00000
40						

	COUS - MT/HR					
		H2				
13	CO2 Lock Hopper Flare H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed	0 000	10 0000	0 0000		
15	Lock Hopper Flare	0.000	10.0000	0.0000		
17	H2-rich Reducing gas	739.203	0.0000	99.9677		
19	Top gas with Fines	730.740	0.0000	99.9660		
21	Top gas from Reactor #1	730.740	0.0000	99.9660		
22	Cooled Top gas	730.740	0.0000	99.9660		
23	Dry Top gas	730.740	0.0000	99.9660		
24	Recycle gases	694.203	0.0000	94.9677		
25	Make-up gases	45.000	0.0000	5.0000		
26	Cold Reducing gas	739.203	0.0000	99.9677		
27	Preheated Reducing gas	739.203	0.0000	99.9677		•
28	28	207.514	13.0606	13.2093		
29	preed	36.537	0.0000	4.9983		
32	SVNI CAC	0.000	2.7432	0.0000		
35	Hot Peducing and	45.000	0.0000	5.0000		
38	Ton gas with Fines	140.341	0.0000	0.0000		
40	Top gas from Reactor #2	140.344	0.0000	0.0000		
41	Cooled Top gas	140.344	0.0000	0.0000		
42	Dry Top Gas	140.344	0.0000	0.0000		
43	Recycle gas	133.327	0.0000	0.0000		
44	Bleed	7.017	0.0000	0.0000		
45	Methane	15.000	0.0000	0.0000		
46	Cold Reducing Gas	148.327	0.0000	0.0000		
47	Bleed 32 SYN GAS Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane Cold Reducing Gas Preheated Reducing Gas	148.327	0.0000	0.0000		
	EOUS - WEIGHT PERCENT STREAM	310	00	7700	0114	COTIC
140.	SIRLAM					
	+	+		n20	CH4	C2.115
 8	STREAM +	0.0000	0.0000	+	0.000	0.00000
8 10	Fines to Cyclone Dust Cyclone Overs	0.0000	0.0000	100.000 100.000	0.000 0.000	0.00000
8 10 12	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	100.000 100.000 100.000	0.000 0.000 0.000	0.00000 0.00000 0.00000
8 10 12 17	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207	0.000 0.000 0.000 6.374	0.00000 0.00000 0.00000 0.00000
8 10 12 17	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915	0.000 0.000 0.000 6.374 5.809	0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915	0.000 0.000 0.000 6.374 5.809 5.809	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 9.915	0.000 0.000 0.000 6.374 5.809 5.809	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 9.915	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases	+	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 9.915 0.220 0.220	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases	+	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 9.915 0.220 0.220	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434 5.416	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas	+	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 9.915 0.220 0.220	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434 5.416	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas	+	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 9.915 0.220 0.220 0.000 0.207	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434 5.416 6.374 6.374	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 9.915 0.220 0.220 0.000 0.207 0.207	0.000 0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 10 12 17 19 21 22 23 24 25 26 27 28	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.220 0.207 0.207 0.207 0.996 0.220	0.000 0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 6.374	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.220 0.207 0.207 0.207 0.996 0.220 0.000	0.000 0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 57.461 6.434	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 77.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 0.220 0.220 0.207 0.207 0.207 0.207 0.207 0.220	0.000 0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 57.461 6.434	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 77.0000 73.4324	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.220 0.207 0.207 0.207 0.207 0.207 0.207 0.200 0.200	0.000 0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 57.461 6.434	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 77.0000 73.4324 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.220 0.207 0.207 0.207 0.207 0.207 0.207 0.200 0.200 0.200	0.000 0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 57.461 6.434 100.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 77.0000 73.4324	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.220 0.207 0.207 0.207 0.207 0.207 0.207 0.200 0.200 0.200 0.200	0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 6.374 57.461 6.434 100.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 77.0000 73.4324 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 0.220 0.220 0.207 0.207 0.207 0.207 0.207 0.207 0.200 0.000 1.354 13.123	0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 6.374 57.461 6.434 100.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38 40 41	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 77.0000 73.4324 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 0.220 0.207 0.207 0.207 0.207 0.207 0.200 0.000 1.354 13.123 13.123	0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 6.374 57.461 6.434 100.000 0.000 0.000 100.000 100.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38 40 41	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 77.0000 73.4324 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 0.220 0.207 0.207 0.296 0.220 0.000 1.354 13.123 13.123	0.000 0.000 6.374 5.809 5.809 6.434 6.434 5.416 6.374 6.374 6.374 57.461 6.434 100.000 0.000 0.000 100.000 100.000 79.110 79.110	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38 40 41 42	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 0.0000 77.0000 73.4324 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.207 9.915 9.915 0.220 0.207 0.207 0.296 0.220 0.000 1.354 13.123 13.123	0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434 5.416 6.374 6.374 57.461 6.434 100.000 0.000 0.000 100.000 100.000 89.731 79.110 79.110 89.705	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38 40 41 42 43	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 0.0000 77.0000 73.4324 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.208 0.220 0.000 1.354 13.123 13.123 1.488 1.488	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434 5.416 6.374 57.461 6.434 100.000 0.000 0.000 100.000 100.000 89.731 79.110 79.110 89.705 89.705	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38 40 41 42 43 44	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 0.0000 77.0000 73.4324 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.207 0.207 0.207 0.207 0.207 0.207 0.208 0.220 0.000 1.354 13.123 13.123 1.488 1.488	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434 5.416 6.374 57.461 6.434 100.000 0.000 0.000 100.000 100.000 89.731 79.110 79.110 79.110 89.705 89.705	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38 40 41 42 43 44	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1289 0.0000 0.0000 77.0000 73.4324 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	100.000 100.000 0.207 9.915 9.915 0.220 0.207 0.207 0.207 0.207 0.207 0.207 0.208 0.220 0.000 1.354 13.123 13.123 13.123 1.488 1.488 1.488 0.000 1.354	0.000 0.000 0.000 6.374 5.809 5.809 5.809 6.434 6.434 5.416 6.374 57.461 6.434 100.000 0.000 0.000 100.000 100.000 89.731 79.110 79.110 79.110 89.705 89.705 89.705 90.000 89.731	0.00000 0.00000

NO.	OUS - WEIGHT PERCENT STREAM			CO2			
13	CO2 Lock Hopper Flare H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed		0.0000	100.000	0.0000		
15	Lock Hopper Flare		0.0000	100.000	0.0000		
17	H2-rich Reducing gas		82.2902	0.000	11.1287		
19	Top gas with Fines		74.1345	0.000	10.1417		
21	Top gas from Reactor #1		74.1345	0.000	10.1417		
22	Cooled Top gas		74.1345	0.000	10.1417		
23	Dry Top gas		82.1129	0.000	11.2331		
24	Recycle gases		82.1129	0.000	11.2331	•	
25	Make-up gases		85.1256	0.000	9.4584		
25	Cold Reducing gas		82.2902	0.000	11.1287		
21	rreneated Reducing gas		25 0722	0.000	11.120/		
29	Bleed		82 1129	0.000	11 2331		
3.3	22		0 0000	12 710	0 0000		
33	SYN GAS		90.0000	0.000	10.0000		
36	Hot Reducing gas		8.9148	0.000	0.0000		
38	Top gas with Fines		7.7671	0.000	0.0000		
40	Top gas from Reactor #2		7.7671	0.000	0.0000		
41	Cooled Top gas		7.7671	0.000	0.0000		
42	Dry Top Gas		8.8073	0.000	0.0000		
43	Recycle gas		8.8073	0.000	0.0000		
44	Bleed		8.8073	0.000	0.0000		
4.5	Methane		10.0000	0.000	0.0000		
46	Cold Reducing Gas		8.9148	0.000	0.0000		
	SYN GAS Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane Cold Reducing Gas Preheated Reducing Gas						
NO.	EOUS - VOLUME PERCENT STREAM +		N2	02	H2O	CH4	C2H6
	+	· -	+		+		
8	Fines to Cyclone		0.0000	0.0000	100.000	0.000	0.00000
10	Dust Cyclone Overs		0 0000	0 0000			
12	Bag Filter Exhaust		0.0000	0.0000	100.000	0.000	0.00000
17			0.0000	0.0000	100.000	0.000 0.000	0.00000
- :	H2-rich Reducing gas		0.0000	0.0000	100.000 100.000 0.028	0.000 0.000 0.955	0.00000 0.00000 0.00000
19	H2-rich Reducing gas Top gas with Fines		0.0000	0.0000	100.000 100.000 0.028 1.446	0.000 0.000 0.955 0.952	0.00000 0.00000 0.00000 0.00000
19	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1		0.0000	0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446	0.000 0.000 0.955 0.952 0.952	0.00000 0.00000 0.00000 0.00000
19 21 22	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446	0.000 0.000 0.955 0.952 0.952	0.00000 0.00000 0.00000 0.00000 0.00000
19 21 22 23	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas	********	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029	0.000 0.000 0.955 0.952 0.952 0.955	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 21 22 23 24	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases	*********	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029	0.000 0.000 0.955 0.952 0.952 0.955 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 21 22 23 24 25	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas	** www.	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000	0.000 0.000 0.955 0.952 0.952 0.965 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 21 22 23 24 25 26	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas	• •	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028	0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 21 22 23 24 25 26 27 28	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28	A1	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.028	0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 21 22 23 24 25 26 27 28	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed	A1	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.028 0.028	0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
	H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas	**	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578 0.965	
30 31	Natural Gas Air	***	0.0000			100.000	
30 31 32	Natural Gas Air 32	***	0.0000 79.2708 72.9037	0.0000 20.7292 3.0000	0.000 0.000 16.064	100.000 0.000 0.000	0.00000 0.00000 0.00000
30 31 32 34	Natural Gas Air 32 METHANE	***	0.0000 79.2708 72.9037 0.0000	0.0000 20.7292 3.0000 0.0000	0.000 0.000 16.064 0.000	100.000 0.000 0.000 100.000	0.00000 0.00000 0.00000 0.00000
30 31 32 34 36	Natural Gas Air 32 METHANE Hot Reducing gas	**	0.0000 79.2708 72.9037 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000	0.000 0.000 16.064 0.000 0.745	100.000 0.000 0.000 100.000 55.430	0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines		0.0000 79.2708 72.9037 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657	100.000 0.000 0.000 100.000 55.430 51.839	0.00000 0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38 40	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2		0.0000 79.2708 72.9037 0.0000 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657	100.000 0.000 0.000 100.000 55.430 51.839 51.839	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38 40 41	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas		0.0000 79.2708 72.9037 0.0000 0.0000 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657 7.657	100.000 0.000 0.000 100.000 55.430 51.839 51.839	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38 40 41 42	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas		0.0000 79.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657 7.657 0.822	100.000 0.000 100.000 55.430 51.839 51.839 55.676	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38 40 41 42 43	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas	**	0.0000 79.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657 7.657 0.822 0.822	100.000 0.000 100.000 55.430 51.839 51.839 55.676 55.676	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38 40 41 42 43	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed	**	0.0000 79.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657 7.657 0.822 0.822	100.000 0.000 100.000 55.430 51.839 51.839 55.676 55.676	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38 40 41 42 43 44	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane		0.0000 79.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657 7.657 0.822 0.822 0.822	100.000 0.000 100.000 55.430 51.839 51.839 55.676 55.676 55.676 53.072	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 31 32 34 36 38 40 41 42 43 44	Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed		0.0000 79.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 20.7292 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 16.064 0.000 0.745 7.657 7.657 0.822 0.822 0.822 0.000 0.745	100.000 0.000 100.000 55.430 51.839 51.839 55.676 55.676 55.676 53.072 55.430	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

GASEOUS - VOLUME PERCENT NO. STREAM	H2		
	0.0000		
15 Lock Hopper Flare	0.0000	100.000	0.00000
17 H2-rich Reducing gas	98.0634	0.000	0.95446
19 Top gas with Fines	96.6503	0.000	0.95159
21 Top gas from Reactor #1	96.6503	0.000	0.95159
22 Cooled Top gas	96.6503	0.000	0.95159
23 Dry Top gas	98.0400	0.000	0.96527
24 Recycle gases	98.0400	0.000	0.96527
25 Make-up gases	98.4260	0.000	0.78709
26 Cold Reducing gas	98.0634	0.000	0.95446
27 Preheated Reducing gas	98.0634		0.95446
28 28	82.3647	0.237	0.37734
29 Bleed	98.0400	0.000	0.96527
32 32	0.0000	8.032	0.00000
33 SYN GAS	99.2067	0.000	0.79333
36 Hot Reducing gas	43.8251	0.000	0.00000
38 Top gas with Fines	40.5035	0.000	0.00000
40 Top gas from Reactor #2	40.5035	0.000	0.00000
41 Cooled Top gas	40.5035	0.000	0.00000
42 Dry Top Gas	43.5015	0.000	0.00000
43 Recycle gas	43.5015	0.000	0.00000
44 Bleed	43.5015		0.00000
45 Methane	46.9280		0.00000
46 Cold Reducing Gas	43.8251	0.000	0.00000
47 Preheated Reducing Gas	43.8251	0.000	0.00000

SOLIDS - MT MOLES/HR NO. STREAM	Fe304	Fe203	Fe3C1	C1	Fe1
NO. STREAM		· +	+	+	
2 Thickener Underflow	3.88665	0.31310	0.00000	0.00000	0.00000
3 Thickener Overflow	0.00039	0.00003	0.00000	0.00000	0.00000
4 Slurry to Filter	3.88665	0.31307	0.00000	0.00000	0.00000
5 Filtered Solids	3.87888	0.31244	0.00000	0.00000	0.00000
6 Filterate	0.00777	0.00063	0.00000	0.00000	0.00000
7 Dried Solids 8 Fines to Cyclone	0 02630	0.2/431	0.00000	0.00000	0.00000
9 Dust Cyclone Unders	0.02630	0.03623	0.00000	0.00000	0.00000
10 Dust Cyclone Overs	0.00132	0.00191	0.00000	0.00000	0.00000
11 Baghouse Discharge	0.00127	0.00183	0.00000	0.00000	0.00000
12 Bag Filter Exhaust	0.00005	0.00007	0.00000	0.00000	0.00000
14 LOCK HOPPER DISCHARGE	3.87888	0.31237	0.00000	0.00000	0.00000
37 Final Product	0.00000	0.00000	3.97042	0.00000	0.00000
38 Top gas with Fines	0.00000	0.00000	0.20897	0.00000	0.00000
1 Iron Ore Slurry 2 Thickener Underflow 3 Thickener Overflow 4 Slurry to Filter 5 Filtered Solids 6 Filterate 7 Dried Solids 8 Fines to Cyclone 9 Dust Cyclone Unders 10 Dust Cyclone Overs 11 Baghouse Discharge 12 Bag Filter Exhaust 14 Lock Hopper Discharge 15 CAKE TO DRYER 37 Final Product 38 Top gas with Fines 39 Recycle Solids from Reactor #2	0.00000	0.00000	0.20897	0.00000	0.00000
301,103 - MI MOLESZER					
NO. STREAM	\$11 +	S1102 	FeO		
1 Iron Ore Slurry 2 Thickener Underflow 3 Thickener Overflow 4 Slurry to Filter 5 Filtered Solids 6 Filterate 7 Dried Solids 8 Fines to Cyclone 9 Dust Cyclone Unders 10 Dust Cyclone Overs 11 Baghouse Discharge 12 Bag Filter Exhaust 14 Lock Hopper Discharge 16 CAKE TO DRYER 18 Partially Reduced Ore 19 Top gas with Fines 20 Recycled Solids from Reactor #1 37 Final Product	0.00000	0.83216	0.0000		
2 Thickener Underflow	0.00000	0.83207	0.0000		
3 Thickener Overflow	0.00000	0.00008	0.0000		
5 Filtered Solids	0.00000	0.83041	0.0000		
6 Filterate	0.00000	0.00166	0.0000		
7 Dried Solids	0.00000	0.72905	0.0000		
8 Fines to Cyclone	0.00000	0.10136	0.0000		
10 Dust Cyclone Owers	0.00000	0.09629	0.0000		
11 Baghouse Discharge	0.00000	0.00307	0.0000		
12 Bag Filter Exhaust	0.00000	0.00019	0.0000		
14 Lock Hopper Discharge	0.00000	0.83022	0.0000		
16 CAKE TO DRYER	0.00000	0.83041	0.0000		
18 Fartially Reduced Ore 19 Top gas with Fines	0.00000	0.83022	0 6453	-	
20 Recycled Solids from Reactor #1	0.00000	0.04370	0.6453		
37 Final Product 38 Top gas with Fines	0.00000	0.83022	0.3500		
38 Top gas with Fines	0.00000	0.04370	0.0184		
39 Recycle Solids from Reactor #2	0.00000	0.04370	0.0184		
SOLIDS - MOLE PERCENT					
NO. STREAM	Fe304	Fe2O3	Fe3C1	C1	Fe1
1 Iron Ore Slurry	77.2418	6.2219	0.0000		
2 Thickener Underflow		6.2219		0.00000	
3 Thickener Overflow	77.2418	6.2219	0.0000	0.00000	
4 Slurry to Filter 5 Filtered Solìds		6.2219 6.2219		0.00000	
	77.2418			0.00000	
7 Dried Solids		5.6489		0.00000	
8 Fines to Cyclone		23.0018		0.00000	
9 Dust Cyclone Unders		23.0018		0.00000	
	15.8644 15.8644			0.00000	
14 Lock Hopper Discharge	15.8644 77.2457	6.2208	0.0000	0.00000	0.00000
16 CAKE TO DRYER	77.2418	6.2219	0.0000	0.00000	0:00000
37 Final Product 38 Top gas with Fines	0.0000	0.0000	77.0864	0.00000	0.00000
38 Top gas with Fines 39 Recycle Solids from Reactor #2	0.0000	0.0000	77.0864		

NO.	IDS - MOLE PERCENT STREAM	Sì1	Si102	FeO		
1	Iron Ore Slurry Thickener Underflow Thickener Overflow Slurry to Filter Filtered Solids Filterate Dried Solids Fines to Cyclone Dust Cyclone Unders Dust Cyclone Overs Baghouse Discharge Bag Filter Exhaust Lock Hopper Discharge CAKE TO DRYER Partially Reduced Ore Top gas with Fines Recycled Solids from Reactor #1	0.00000	+ + 16.5363	0.0000		
2	Thickener Underflow	0.00000	16.5363	0.0000		
3	Thickener Overflow	0.00000	16.5363	0.0000		
.4	Slurry to Filter	0.00000	16.5363	0.0000		
5	Filtered Solids	0.00000	16.5363	0.0000		
7	Priod Colida	0.00000	16.5363	0.0000		
,	Fines to Cyclone	0.00000	61 1338	0.0000		
9	Dust Cyclone Unders	0.00000	61.1338	0.0000		
10	Dust Cyclone Overs	0.00000	61.1338	0.0000		
11	Baghouse Discharge	0.00000	61.1338	0.0000		
12	Bag Filter Exhaust	0.00000	61.1338	0.0000		
14	Lock Hopper Discharge	0.00000	16.5335	0.0000		
16	CAKE TO DRYER	0.00000	16.5363	0.0000		
18	Partially Reduced Ore	0.00000	6.3417	93.6583		
19	Top gas with Fines	0.00000	6.3417	93.6583		
20	Recycled Solids from Reactor #1	0.00000	6.3417	93.6583		
3/	Top goe with Fines	0.00000	16.1188	5./94/		
30	Final Product Top gas with Fines Recycle Solids from Reactor #2	0.00000	16 1188	6 7947		
	EOUS - MT MOLES/HR		10.1100	01/31/		
NO.	STREAM	N2	02	H20	CH4	C2H6
	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed	+	+	+	+	
8	Fines to Cyclone	0.00000	0.00000	6.4230	0.0000	0.00000
10	Dust Cyclone Overs	0.00000	0.00000	6.4230	0.0000	0.00000
12	Bag Filter Exhaust	0.00000	0.00000	6.4230	0.0000	0.00000
1/	H2-rich Reducing gas	0.00000	0.00000	0.1031	3.5692	0.00000
21	Top gas with rines	0.00000	0.00000	5.424/	3.3632	0.00000
21	Cooled Top gas	0.00000	0.00000	5.4247	3 5692	0.00000
23	Dry Top das	0.00000	0.00000	0 1085	3 5692	0.00000
24	Recycle gases	0.00000	0.00000	0.1033	3.3907	0.00000
25	Make-up gases	0.00000	0.00000	0.0000	0.1785	0.00000
26	Cold Reducing gas	0.00000	0.00000	0.1031	3.5692	0.00000
27	Preheated Reducing gas	0.00000	0.00000	0.1031	3.5692	0.00000
28	28	0.23311	0.00000	0.3198	20.7187	0.00000
29	28 Bleed Natural Gas Air 32 METHANE	0.00000	0.00000	0.0054	0.1785	0.00000
30	Natural Gas	0.00000	0.00000	0.0000	0.0623	0.00000
31	Air	0.56576	0.14795	0.0000	0.0000	0.00000
32	32	0.56576	0.02328	0.1247	0.0000	0.00000
34	METHANE	0.00000	0.00000	0.0000	0.1785	0.00000
	Hot Reducing gas Top gas with Fines		0.00000		93.0606	
	Top gas with rines Top gas from Reactor #2		0.00000			
	Cooled Top gas		0.00000			
	Dry Top Gas		0.00000		89.1008	
	Recycle gas		0.00000		84.6457	
	Bleed		0.00000			0.00000
	Methane		0.00000		8.4149	
	Cold Reducing Gas		0.00000		93.0606	
	Preheated Reducing Gas	0.00000	0.00000		93.0606	

	COUS - MT MOLES/HR	77.0	200	CO	•	
NO.	STREAM	H2 ++	+	co		
13	CO2 Lock Hopper Flare H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed	0.000	0.22722	0.00000		
15	Lock Hopper Flare	0.000	0.22722	0.00000		
17	H2-rich Reducing gas	366.679	0.00000	3.56893		
21	Top gas with rines	362.481	0.00000	3.55557		
22	Cooled Top gas	362.401	0.00000	3 56887		
23	Dry Top gas	362.481	0.00000	3.56887		
24	Recycle gases	344.357	0.00000	3.39042		
25	Make-up gases	22.322	0.00000	0.17850		
26	Cold Reducing gas	366.679	0.00000	3.56893		•
27	Preheated Reducing gas	366.679	0.00000	3.56893		
28	28	102.937	0.29676	0.47158		
29	Bleed	18.124	0.00000	0.17844	*	
32	32	0.000	0.06233	0.00000		
32	Hot Poducing gas	22.322	0.00000	0.17830		
38	Top gas with Fines	69.517	0.00000	0.00000		
40	Top gas from Reactor #2	69.617	0.00000	0.00000		
41	Cooled Top gas	69.617	0.00000	0.00000		
42	Dry Top Gas	69.617	0.00000	0.00000		
43	Recycle gas	66.137	0.00000	0.00000		
44	Preneated Reducing gas 28 Bleed 32 SYN GAS Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Dry Top Gas Recycle gas Bleed Methane	3.481	0.00000	0.00000		
45	Methane	7.441	0.00000	0.00000		
46	Recycle gas Bleed Methane Cold Reducing Gas Preheated Reducing Gas	13.511	0.00000	0.00000		
4 /	Freneated Reducing Gas	13.311	0.00000	0.00000		
GAS	EOUS - MOLE PERCENT					
NO.	STREAM	N2	02	H2O	CH4	C2H6
				. 1120	OHT	02110
			0.000	+	0.000	0.0000
8	Fines to Cyclone	0.0000	0.0000	100.000	0.000	0.00000
8 10 12	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust	0.0000	0.0000	100.000 100.000 100.000	0.000	0.00000
8 10 12 17	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028	0.000 0.000 0.000 0.000 0.955	0.00000 0.00000 0.00000 0.00000
8 10 12 17	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446	0.000 0.000 0.000 0.000 0.955 0.952	0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446	0.000 0.000 0.000 0.955 0.952 0.952	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 10 12 17 19 21	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446	0.000 0.000 0.000 0.955 0.952 0.952	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 10 12 17 19 21 22 23	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 1.446	0.000 0.000 0.000 0.955 0.952 0.952 0.952	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029	0.000 0.000 0.000 0.955 0.952 0.952 0.955 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.029	0.000 0.000 0.000 0.955 0.952 0.952 0.955 0.965 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.028 0.256 0.029	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.028 0.256 0.029 0.000	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.0000 79.2708	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.7292 3.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.000	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 0.955 16.578 0.965	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 30 31	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.0000 79.2708 72.9037 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.7292 3.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.000	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 0.955 16.578 0.965 100.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.0000 79.2708 72.9037 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.7292 3.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.000 16.064 0.000 0.745	0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578 0.965 100.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36 38	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.0000 79.2708 72.9037 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.7292 3.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.028 0.745 7.657	0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 0.965 10.000 0.000 0.000 100.000 55.430 51.839	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 34 36	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.0000 79.2708 72.9037 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.000 16.064 0.000 0.745 7.657	0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.787 0.955 16.578 0.965 100.000 0.000 100.000 55.430 51.839	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 40 41	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.1865 0.0000 0.2708 72.9037 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.745 7.657 7.657 7.657	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 0.955 10.000 0.000 0.000 100.000 55.430 51.839 51.839 55.676	0.00000 0.00000
8 10 12 17 19 21 22 23 24 25 26 27 28 29 30 31 32 41 42 43	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Recycle gas Recycle gas	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.1865 0.0000 0.2708 72.9037 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.000 16.064 0.000 0.745 7.657 7.657 7.657	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 10.000 0.000 0.000 100.000 55.430 51.839 51.839 55.676 55.676	0.00000 0.00000
8 10 12 17 19 21 17 19 21 22 23 24 25 26 27 28 29 30 31 32 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Recycle gas Recycle gas Recycle gas Recycle gas Bleed	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.1865 0.0000 0.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 16.064 0.000 0.745 7.657 7.657 7.657 0.822 0.822	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 0.955 16.578 0.965 100.000 0.000 0.000 100.000 55.430 51.839 51.839 55.676 55.676	0.00000 0.00000
8 10 12 17 19 21 17 19 21 22 23 24 25 26 27 28 29 30 31 32 44 45 44 45	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Recycle gas Recycle gas Recycle gas Bleed Methane	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.1865 0.0000 0.2000 79.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 0.000 16.064 0.000 0.745 7.657 7.657 7.657 0.822 0.822	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 0.955 10.000 0.000 100.000 55.430 51.839 51.839 55.676 55.676 53.072	0.00000 0.00000
8 10 12 17 19 21 17 19 21 22 24 25 26 27 28 29 30 31 32 44 14 45 46 45 46 45 46 46 46 46 46 46 46 46 46 46 46 46 46	Fines to Cyclone Dust Cyclone Overs Bag Filter Exhaust H2-rich Reducing gas Top gas with Fines Top gas from Reactor #1 Cooled Top gas Dry Top gas Recycle gases Make-up gases Cold Reducing gas Preheated Reducing gas 28 Bleed Natural Gas Air 32 METHANE Hot Reducing gas Top gas with Fines Top gas from Reactor #2 Cooled Top gas Recycle gas Recycle gas Recycle gas Recycle gas Bleed	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1865 0.0000 0.1865 0.0000 0.2708 72.9037 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	100.000 100.000 100.000 0.028 1.446 1.446 0.029 0.029 0.000 0.028 0.256 0.029 0.000 16.064 0.000 0.745 7.657 7.657 7.657 7.657 0.822 0.822 0.822 0.745	0.000 0.000 0.000 0.955 0.952 0.952 0.965 0.965 0.965 0.955 10.000 0.000 0.000 100.000 55.430 51.839 51.839 51.839 55.676 55.676 55.676 55.676	0.00000 0.00000

GASEOUS - MOLE PERCENT NO. STREAM	H2	CO2	СО
13 CO2		100.000	
15 Lock Hopper Flare	0.0000	100.000	0.00000
17 H2-rich Reducing gas	98.0634	0.000	0.95446
19 Top gas with Fines	96.6503	0.000	0.95159
21 Top gas from Reactor #1	96.6503	0.000	0.95159
22 Cooled Top gas	96.6503	0.000	0.95159
23 Dry Top gas	98.0400	0.000	0.96527
24 Recycle gases	98.0400	0.000	0.96527
25 Make-up gases	98.4260	0.000	0.78709
26 Cold Reducing gas	98.0634	0.000	0.95446
27 Preheated Reducing gas	98.0634	0.000	0.95446
28 28	82.3647	-	0.37734
29 Bleed	98.0400	0.000	0.96527
32 32	0.0000	8.032	0.00000
33 SYN GAS	99.2067	0.000	0.79333
36 Hot Reducing gas	43.8251	0.000	0.00000
38 Top gas with Fines	40.5035		0.00000
40 Top gas from Reactor #2	40.5035		0.00000
41 Cooled Top gas	40.5035	0.000	0.00000
42 Dry Top Gas	43.5015		0.00000
43 Recycle gas	43.5015		0.00000
44 Bleed	43.5015		0.00000
45 Methane	46.9280		0.00000
46 Cold Reducing Gas	43.8251		0.00000
47 Preheated Reducing Gas	43.8251	0.000	0.00000